
1

Robust Cache Coherence Protocol Verification with Inferno

EECS 578 Project Report

Team FLY-Bee

Xiangfei Kong Zeyu Bu Yao Jiang Chenxi Lou

Abstract - Fault tolerant architectures are emerging to

guarantee the reliable functionality of vulnerable silicon devices.

However, the growing complexity of the coherence protocol and

Network-on-Chip (NoC) design come to be a big challenge to pre-

silicon verification. In this work, we implemented a custom

designed robust MESI and directory based cache coherence

protocol in System Verilog and practiced with Inferno - a software

tool that operates on a logic simulation trace and automatically

extracts transactions of the RTL design to evaluate the tool’s help

on accelerating the verification process. Experiments show that

comparing with verification approaches that only use waveform

viewer based debugging tools, adding Inferno into the verification

process can effectively reduce the time and efforts verification

engineers need to make to detect and locate potential bugs in the

design. We also summarize our user experience with Inferno and

present suggestions both to Inferno users and developers in this

paper.

Keywords - Robust Cache Coherence Protocol; Network-on

Chip; MESI; Pre-silicon Verification; Inferno; Debugging Tool;

I. INTRODUCTION

 Modern digital hardware designs tend to become more and

more complex due to the customers’ continuous demand for
performance and the utilization of transistor scaling technology.
However, the growing complexity of the hardware design is
exacerbating the challenges of verification and debugging. The
traditional waveform-based simulation which describes the
behavior of a design in terms of changes of signals tends to be
inefficient when dealing with the large scale IP and system-level
design.

 In this project, we present a verification example in which
we use a novel verification tool – Inferno to verify a system-
level design. Inferno is a more efficient verification solution
which is able to establish the connection between a high-level
description and low-level module behaviors, eventually, the
description of the DUV’s behavior is exported in the form of a
transaction diagram. Such a description provides engineers great
convenience when verifying the design aiming at its
functionality. In our project, we decide to utilize inferno to verify
a directory-based cache coherence protocol model. Since the
basic MESI protocol model can be fully verified by functional
verification and Murphi, we will not repeat the verification of
MESI model here, instead, we implement a cache coherence
protocol with resilient property in a multi-core system and use it
as our design under verification (DUV).

 The reminder of this report is organized as follows. Related
work is discussed in Section II. Section III briefly introduces the
implementation of the resilient cache coherence protocol model.
The debugging process with Inferno is described in Section IV.
Section V presents the experimental results by using Inferno.

Some tool development suggestions will be proposed in Section
VI. We hope this project can provide inspirations to verification
engineers who would like to use Inferno in future.

II. RELATED WORK

A. Inferno

 The idea to develop a brand new verification tool to
automatically extract the properties is proposed in [1].
Transactional verification methodology and several study cases
with Inferno are discussed in this paper.

B. Resilient cache coherence protocol model

 The MESI coherence protocol model that could be
completely verified using Murphi is presented in [5]. We
decided to verify a cache coherence model with resilient
property to see if Inferno gives us a more efficient verification
solution when dealing with a more complicated DUV. The
motivation and three major properties to bring up such a resilient
cache coherence protocol model is proposed in [6]. Several
transaction cases are discussed and compared with non-resilient
model in the paper, which gives us an explicit understanding
when implementing the resilient model.

III. DESIGN DESCRIPTION

 We implemented the multi-core system architecture as
shown in Fig. 1. Three single-thread cores are attached to the
2x2 mesh router network and one node is reserved for the
directory, which is the central control unit connected to data
memory to ensure the memory coherence. In the design, each
core has its own L1 data cache, instruction cache & memory and
all three cores share the data memory via the directory.

Fig. 1. Proposed Multi-core Network Architeture.

2

A. Core & Data Cache Controller

 We started with the single-thread blocking processor design
from course EECS 470 project provided by Xiaoming Guo and
Sijia He. To modify their snoopy-bus based cache coherence
protocol design to directory based design, the data cache
controller was redesigned from the ground up, while most pf the
other parts of design remained unchanged.

 The Data Cache Controller was designed to implement basic
MESI Directory Protocol at first. The state machine for
implementing such protocol was described in [5], the
correctness of which was thoroughly verified by Murphi when
Yao took course EECS 570. In this manner, we mainly referred
to this book for protocol implementation. However, some
modifications were made to ensure the correctness of our design.
Our router network can only receive one message from one core
at a time. But sometimes the core needs to send messages to both
directory and core. To ensure the correctness, two additional
states, MI_A_2_SI_A and EI_A_2_SI_A, were added to send
the second message. The messages that the core could inject into
router network are shown in table I. If the core does not need to
send command to router network, CMD_IDLE will show up at
the interface.

TABLE I. TABLE OF MESSAGE VIRTUAL CHANNEL ASSIGNMENT

Message
CMD_IDLE, GetS, GetM, PutS,

PutM, PutE, Fwd_GetS, Fwd_GetM,
Invalid, Put_Ack, Data, Inv_Ack

 The second step was to add the robustness feature to our
cache design. Paper [6] was referred to for the implementation.
The key point is to add transient states and additional hand
shaking mechanism to guarantee the robustness of coherence
protocol. Additional states and message are presented in table II.

TABLE II. TABLE OF MESSAGE VIRTUAL CHANNEL ASSIGNMENT

States Sd, Ed, Ma, Md, lp, E_2_S, lpS, Sd_l, Ed_1

Message Unblock, Done, Inv_Perm, Inv_Conf

 Modification were made to ensure three properties.

 Initiating node must remain transient throughout the
transaction.

 Previously transmitted messages can be regenerated.

 Nodes can tolerate duplicate messages and produce the same
outcome.

 We basically implemented the robust coherence protocol as
described in paper [6]. But there is one scenario that the paper
does not clearly explain, that is: when the directory is currently
in E state, and one core sends getS message, the core with E state
is supposed to transit to a transient state after providing the data
for robust purpose. To ensure the robustness, the state machine
was modified as shown in Fig. 2.

 Test cases were then developed to prove the robustness of
our design. The detail of our verification plan and methodology
will be discussed later in this paper.

Fig. 2. The modified state machine to implement robust feature.

B. Directory

 We created the directory and directory controller from
scratch. They were designed to implement the basic MESI
Directory Protocol at first, which was verified using Murphi in
EECS 570. The implementation of the protocol is blocking. The
directory controller will not respond to other requests until the
current transaction is completed. Moreover, to prevent deadlock,
the directory controller has three buffers to receive messages
from different virtual channels.

 After we added robust feature to the basic protocol, since
more coherent messages were included and the protocol was
becoming more complex, deadlocks would still happen. Instead
of adding more virtual channels, we made some interesting
modifications to the protocol itself. Each time the directory
controller receives an unexpected message it cannot process, it
will drop it from the buffer. Since our protocol is resilient, the
same request will be resent and it is safe to do so. It helps to test
the robust feature of our design as well.

C. 2x2 Mesh Router Network Design

 In this project, we use the open source Network-on-Chip
Router RTL model from Booksim [4] to construct our
interconnect network. The router model is configured to be a
wormhole based design, using a simple XY routing algorithm
and have four virtual channels. Each flit is 64-bit long and can
either be a head, body or tail flit.

 Interfaces were designed to coordinate the communication
between core-router and directory-router. Core-router and
directory-router interfaces are responsible for encoding the
requests, data, responses into the router injection channel
streams and decoding ejection channel packets into messages
and data that router/directory can process. Most packets are one-
flit long while the ‘Data’ and ‘PutM’ packets, as they contain the
64-bit data, will be encoded into three flits and sent to the
injection channel in three consecutive cycles.

 To simplify the design and ensure the expected ordering of
messages received, we assign each type of message a specific
virtual channel, which is shown in Table III.

I

IS

Request

Sd1

Data
from Core Inv_Perm

Sd

Inv_Conf Unblock

S

D. from Dir
&& Ack != 0 Unblock

Ed

D. from Dir
&& Ack == 0 Unblock

E

Done Done

Requester

E

lpS

Data

S

Inv_Per
m

Inv_Conv

Request

Exclusive
Sharer

3

TABLE III. TABLE OF MESSAGE VIRTUAL CHANNEL ASSIGNMENT

VC
0

GetS GetM PutS PutM PutE
UnB
lock

VC
1

Fwd_Get
S

Fwd_Get
M

Invalid Put_Ack Done

VC
2

Data Inv_Ack Inv_Perm Inv_Conf

IV. DEBUG WITH INFERNO

A. Inferno Overview

 Inferno, an automatic semantic information extractor, is a
software tool developed at University of Michigan which infers
the functionality of a hardware design using Verilog source code
and simulation traces. It summarizes the behavior of selected
signals into transactions and presents them as a compact graph.
Inferno provides verification engineers with a high level
understanding of the design behavior, simplifying the timing
information and categorizing repetitive behaviors as the weight
in the graph. As claimed by DeOrio [1], past research has
evaluated the performance of Inferno on a broad range of
communication intellectual properties as well as the
OpenSPARC TI 8-core processor from Sun. The project is a
further research on Inferno’s efficiency and verification impact.

 Inferno reads in the trace file (*.vcd/*.dump) generated in
the simulation and analyzes the transition of signals to generate
the graph. Users have the freedom to specify some configuration
options by changing the settings in *.in file. In this section, we
will discuss about our user experience, Inferno’s debug impact
and configuration options.

B. Signal Selection

 Signal selection is expected to be an important influencing
factor for Inferno’s debugging performance. In our practice, we
tested with different selection strategies and finally agreed on
the signals we would like to feed into Inferno. The target here is
to choose as few signals as possible to simplify the diagram
while preserving key information of the communication
between cores and directory.

 Monitor signals only at router interfaces

 The first choice we made is not letting Inferno probe deep
into the design. Instead of choosing signals inside data cache
controller or directory design to verify the inner state machines,
we only monitor signals at core-router and directory-router
interfaces. As the cache coherence control design can vary from
protocol to protocol, monitoring only the interfaces give our
research more flexibility and scalability to be used in other
applications. In addition, we assume the core has previously
been verified and in the research we would like to focus on the
communication between cores and directory.

 Monitor only messages, sender and receiver

 To minimize the number of signals we need to feed into
Inferno, we chose to monitor only the sent message and its
destination router address at injection channel and the received
message and its corresponding requestor at ejection channel. We
ignore information like data value and address as errors related
to correct message but wrong transferred data can be easily
detected and located. In contrast, the sent and received command
can be efficiently used to infer the behavior of memory

coherence control block as well as checking the NoC network’s
correctness. In our design, each interface has one send channel
and two receive channels, which indicates that we have six fields
to monitor in our Inferno diagram. An example for core 0
interface is shown in Fig. 3.

SEND
CMD

Destination
Router

VC1
CMD

VC1
REQUESTER

VC2
CMD

VC2
REQUESTOR

4 bits 2 bits 4 bits 2 bits 4 bits 2 bits

Fig. 3. Signals being monitored at Core-Router Interface.

 Monitor interfaces separately

 Intuitively the best option is to monitor all commands and
their destination/initiator in one diagram, which includes all
passing messages in the NoC network. The unified graph
contains all information and verification engineers only need to
read this single transaction diagram. However, we chose to
generate diagrams for each interface separately as in the
debugging process we found the unified graph is usually too
complex to understand. As discussed before, in binary form each
interface needs 18 bits to compose the information we need and
it comes to be 72 bits for 4 interfaces. Even if we show signals
in hexadecimal, there will still be 24 bits, which is still a big
number to track through. Also, the behavior of the complete
network in many times is too complex to be categorized into a
few transactions. Comparing to the separated graphs, it
complicates the verification engineer’s task of locating the bug
source. Another concern is about the scalability. As the NoC
network implemented in the project is a simple 2x2 network, we
may still be able to understand the unified graph. However,
when the design grows into a larger network, the approach will
sooner or later be inapplicable. Monitoring interfaces separately
provides users with more scalability and simplified transaction
diagrams. Typical interfaces like directory and main initiator
core interface are likely to have more information than other
interfaces and separated transaction diagrams give users the
freedom to break the big verification task into small goals and
look across different transaction diagrams one after another.

C. Don’t Care Signal Masking

 To use Inferno efficiently, some minimal changes in the
design can help as well. An interface is in idle state when nothing
need to be sent and nothing is received. In our original design,
even if the command messages are CMD_IDLE, destination or
requestor may change, leading to ‘redundant states’ in
transaction diagrams. As shown in Fig. 4. Transaction of sending
a single invalid permission message to core 1 is categorized into
several ‘IDLE states’.

Fig. 4. A snapshot of Core 0 interface transaction diagram with no ‘don’t care’

signal masking (states in binary).

Invalid Permission

to Core 1

4

 To simplify the transaction diagram, we decided to mask
destination and requestor address when no valid command
messages is placed at the interface. After the design change, the
only interface idle state is always shown as all zeros. Fig. 5
shows the simplified transaction after design change.

Fig. 5. A snapshot of Core 0 interface transaction diagram after ‘don’t care’

signal masking (states in binary).

D. Inferno Configuration Options

 There are some configuration options in Inferno that are
user-defined. Main ones are: 1) strip_leading_zeros 2)
show_hex 3) ignore_states. We investigated all of these options
and made the configuration choices based on our preference.

 Strip_leading_zeros

 Option of striping leading zeros gives users a chance to
remove leading zeros from diagrams. This can be helpful when
leading bits are redundant information in some cases. Since we
are not in such a case, the option is not useful for us.

 Show_hex

Showing states in hexadecimal instead of binary can be a
great help to some users, especially when user would like to
monitor a large number of signals. Inferno provides such an
option that users can choose. In our debugging process, we also
found the option to be great as in hex each bit in the state now
indicates one signal we are monitoring.

 Ignore_states

Ignore_states is another option we found helpful. In fact, the
option here let you specify typical signal scenarios that you don’t
care about and remove these scenarios from the diagram. In our
case, we don’t care scenarios when sent or received commands
are CMD_IDLE. Fig. 3 shows a comparison of diagrams with
and without ignore_states.

Fig. 6. Comparison between Inferno generated transaction diagrams with

different configurations - left) without ignore_states option right) with
igonore_states option (states in hex).

E. Debug Examples

 Core/DCache Bug Found with Inferno

TABLE IV. TEST CASE FOR VERIFYING THE PROTOCOL

Core 0 Core 1 Core 2

load 0x20 ● ●

 load 0x20 ●

 store 0x20

 Table IV shows one test case for verifying the correctness of
our protocol. The expected message sent and received by Core
2 is as follows:

 Send GetM -> Receive Data -> Receive Inv_Ack from Core
0 and Core 1 -> Send Unblock -> Receive Done

Fig. 7. The Inferno Simulation Result of Core 2 for the test case shown in

Table IV

 But when we run the Inferno with such test case, part of the
result we got is shown in Fig. 7. From the result, it can be seen
clearly that Core 2 sends Unblock to Directory right after
receiving only one Inv_Ack.

 With the help of Inferno, we located the bug easily, and the
occurrence of the bug was due to the improper mechanism of
comparing the Inv_Ack received and the one expected.

 The simulation result after debugging is shown as Figure 8.
We can see from this graph that, as expected, the core 2 sends
Unblock message to Dir after receiving all expected Inv_Ack.

Fig. 8. The Inferno Simulation Result of Core 2 after dubugging

 Directory Bug Found with Inferno

TABLE V. TEST CASE FOR VERIFYING THE PROTOCOL

Core 0 Core 1 Core 2

store 0x20 ● ●

 store 0x20 ●

 ●

Table V shows one simple test sequence which was captured
by Inferno in our simulation. The generated transactions are
illustrated by Fig. 9. The left graph shows a generated
transaction corresponding to our design with a certain bug. The
right graph shows a generated transaction corresponding to our
design after that bug was resolved. And Fig. 10 illustrates the
signals being monitored at Directory-Router Interface.

IDLE
Invalid_Permission

5

 According to the left graph, the directory receives a GetM
message from Core 1 first. Then the directory send a Forward-
GetM to Core 0 which is the owner. Later the directory receives
repeated GetM messages from Core1 for 45 times without
getting any Unblock message. The directory’s responses are
correct while Core1 cannot finish the transaction. This is more
like a design bug because normally there will not be so many
repeated messages. It is very likely that Core 1 cannot receive
data from Core0 or Core 1 receives Data but responds
incorrectly. In this specific situation, Inferno helps us to quickly
find and locate a bug even though it cannot be used to further
trace the bug. After we correct our design of the cache controller,
the generated transaction is shown by the right graph of Fig. 9.
The directory successfully receives the Unblock message from
Core 1 and sends Done message back. This corresponds to our
expected transaction.

Fig. 9. The Inferno Simulation Result of Directory.

V. EXPERIMENTS & RESULTS

 For our project, we developed assembly code tests to verify
both the baseline design and the robustness feature. All major
design bugs found during the debugging process were
documented in the debug log, an online google form for all team
members to record the date, problem found, bug source and
efforts made to find the bug. Inferno was put into use in our
project after the baseline design was done. In this section, we
will give a brief introduction to the tests we developed and our
evaluation on Inferno’s help to the debugging process.

A. Tests

 We developed assembly level tests to test the baseline
design, robustness feature and Inferno. As each core has its own
instruction memory, a test set includes three *.s files for each
core. Total number of test sets developed is around 10 and these
tests exercise typical scenarios that will happen between cores
and directory.

 To verify the robust coherence protocol, we add four packet
drop control signals at each router’s ejection channel. The
control signal is used to explicitly mask the received packets to
model conditions like packet drop or packet corruption in an
unreliable NoC system. We developed test cases that drop flits,
packets or create false positive to send packet duplicates to
challenge the robustness of the cache coherence protocol.

B. Debug Log

 The entire debug log is attached in the appendix. In total, we
found around 65 major design bugs in our debugging process.
Each entry contains following fields: 1) Date 2) Time 3)
Problem 4) Debug person 5) Time taken to locate the bug 6) Bug
source 7) Bug description 8) Use Inferno or not. Bug sources are
categorized into Core, Router and Directory. For debug effort,
we define the efforts we made to find and locate the bug
quantitatively with the equation:

𝐸𝑓𝑓𝑜𝑟𝑡 =
𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛

𝑜𝑓 𝐷𝑒𝑏𝑢𝑔 𝑃𝑒𝑟𝑠𝑜𝑛

 After analyzing the debug log, we found generally Inferno
did help us to locate the bug faster and more easily.

Fig. 10. Numer of bugs found with/without Inferno in each sub design system.

Fig. 11. Average debug effort made for detecting and locating a bug

with/without Inferno in each sub design system.

Fig. 11 shows the average effort made to detect and locate a
bug in different subsystems without and with Inferno’s
assistance.

VI. TOOL DEVELOPMENT SUGGESTION

 Inferno brought a lot of convenience to our debugging
process. However, we also found some defects in the current
version of the tool that can be further improved in future. In this
section, we will present these defects and our suggestions to the
tool developers.

A. Transaction Capturing

 After some practice with Inferno, we found that in some
cases Inferno was unable to capture transactions that were
happening only once. The conclusion was confirmed by

6

5

17

10

13

11

0 5 10 15 20

With Inferno

Without Inferno

of bugs documented
in different design subsystems

Directory Core Router

26.4

17.5

27.3

11.2

24.6

11.4

0

10

20

30

Without Inferno With Inferno

M
in

/p
er

so
n

Average effort made to locate a bug in
different design subsystems

Router Core Directory

6

comparing Inferno transaction diagram with DVE waveform as
well as the source vcd file. At the same time, when the behavior
happened a few times, Inferno successfully included the missed
transaction, while the weight (happening times) was less than
expected.

B. Mess wth Igonore_states

 We discussed about the configuration option of
ignore_states. Unfortunately, although enabling the option can
give a compact and high-level transaction diagram, it is not
always informative. When the CMD_IDLE message is specified
to be ignored, in some cases the generated diagrams can be quite
messy to understand. In Fig. 12, the pink oval is the state sending
an unblock message to core 3 and the red one is the state
receiving the done. The grey block turned out to be a redundant
one generated after turning on the ignore_states option.

Fig. 12. Snapshot of core interface transaction graph with ignore_states option.

C. Suggestions for Inferno Development

 Based on our user experience, we would like to provide some
suggestions to Inferno developers to make the tool stronger.

 Support Enumeration

Supporting enumeration is considered to be a great feature
for Inferno to implement from our perspective. In our case, we
hope to see commands as abstract messages instead of
binary/hex bits. Fig. 13 shows a comparison between an Inferno
generated state form and the state form we expect.

Current a 2 2 0 0 0

Expected Data 2 CMD_IDLE 0 CMD_IDLE 0

Fig. 13. Comparison between current state components and proposed state form

that supports enueration.

 Signal Highlight

For different signals selected to be analyzed in Inferno, they
can have different priorities. In our design, we definitely care
more about the send and received transaction messages than the
destination and requestor ID. It can be helpful if users can
specify typical signals to highlight in configuration setting so
that these ‘high priority signals’ can be identified at first sight.

Current a 2 2 0 0 0

Expected Data 2 CMD_IDLE 0 CMD_IDLE 0

Fig. 14. Comparison between current state components and proposed state form

that supports enueration and highlight.

 Ignore_states Improvement

As claimed before, the current ignore_states option in fact
can only mask unwanted signal values. After correlating
different signals into one state, we also expect the tool to have
the flexibility of masking the combination. An example can be
the interface idle state 000000. We also believe the improvement
can potentially eliminate the need of signal masking, requiring
no design change to match Inferno verification methodology.

VII. FUTURE WORK

In this project, we focused on the robust coherence protocol
design and the debugging process with Inferno. As presented in
the paper, we investigated Inferno’s performance on locating a
design bug and our user experience with the tool. Some work
can be done in future like the evaluation of transaction coverage,
integrating assertions into Inferno and tool development.

VIII. CONCLUSION

The growing complexity of memory coherence protocols
and NoC network design raises the need for novel verification
approaches and debugging tools. In this paper, we presented our
experience of using Inferno, a semantic extractor in our
debugging process and evaluated its effectiveness and potential
to be used in future debugging process. We discussed about our
design, a MESI, directory based multi-core system with
customized data cache and directory state machines to ensure the
system’s robustness in an unreliable NoC network. We also
talked about the configuration options of Inferno to generate a
clear transaction diagram and present our suggestions both to
Inferno users and developers. As shown in our experimental
results section, in average Inferno accelerated the debugging
process and reduced efforts engineers need to make to locate the
bug. We hope our project can inspire Inferno users and
developers and further improve the tool.

ACKNOWLEGEMENT

 We send our sincere thanks to Prof. Bertacco and Doowon
Lee for their great help and guidance on our project. We also
want to express our thanks to Xiaoming and Sijia for providing
their EECS 470 project multi-core RTL design to us.

REFERENCES

[1] A. DeOrio, A. D. Bauserman, V. Bertacco and B. C. Isaksen, "Inferno:

Streamlining Verification With Inferred Semantics," IEEE Transaction

on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 5, pp. 728-741, 2009.

[2] A. DeOrio, A. B. Bauserman, V. Bertacco and B. C. Isaksen,
"INFERNO-An automatic semantic information extractor," University of

Michigan, 2009. [Online]. Available:

http://wwweb.eecs.umich.edu/inferno/.

[3] D. U. Becker, "Open Source Network-on-Chip Router RTL," Stanford

University, 2012. [Online]. Available: http://nocs.stanford.edu/cgi-

bin/trac.cgi/wiki/Resources/Router.

[4] D. U. Becker, "Efficient Microarchitecture for Network-on-Chip

Routers," Stanford University, Stanford, August 2012.

[5] D. J. Sorin, M. D. Hill and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, Madison: Morgan & Claypool, 2011.

[6] K. Aisopos and L.-S. Peh, "A Systematic Methodology to Develop

Resilient Cache Coherance Protcols," MICRO'11, 2011.

7

APPENDIX – DEBUG LOG

Without Inferno Date Time Problem
Debug
Person

Time
taken

Bug
Source

Bug Description

Router

5 bugs found

Average Debug Effort:

26.4 min/person

11/7/2015 12:30 PM
Only head flit, lost body and

tail flit
Xiangfei

20
min

Router
Should include vc info in

the flits as well

11/7/2015 4:00 PM Wrong routing output port Xiangfei
45
min

Router
Router ids allocated do not

conform to the routing
logic

11/9/2015 11:00 PM
No command on router receive

node
Xiangfei

1
hour

Router Virtual channel allocation

11/11/2015 3:00 PM
Partial correct router pass,
wrong data and command

Xiangfei
&

Chenxi

20
min

Router
Verilog Bug, forgot begin

end in if statement

11/11/2015 4:00 PM Wrong ack_cnt at receiver side
Xiangfei

&
Chenxi

10
min

Router
Router: Wrong decode for

channel

Core

10 bugs found

Average Debug Effort:

27.3 min/person

11/9/2015 5:30 PM
The data written to cache is

incorrect
Zeyu 30min

Cache
Controller

The IM_ID state outputs
wrong value to cache

11/9/2015 6:00 PM
The data read from cache has

X
Zeyu 20min

Cache
Controller

Some previous unused
logic cause X

11/11/2015 9:00 AM
Concurrent M and S in the

multicore system
Zeyu &

Yao
55min

Cache
Controller

Does not collect all
Inv_Ack before a transition

to M

11/11/2015 10:40 PM
The Fwd_GetS Message in

cache controller input buffer is
lost

Zeyu 10min
Cache

Controller
Faulty Read_en and of the

virtual input buffer

11/11/2015 10:55 PM
Cache controller met an
unexpected message

Zeyu 10min
Cache

Controller
Faulty logic of Read_en of

the virtual input buffer

11/11/2015 11:20 PM
Cache controller cannot

consume Fwd_GetS
Zeyu 15min

Cache
Controller

Faulty state machine
transition

11/11/2015 11:39 PM
Cache controller cannot send

response of Fwd_GetS
Zeyu 15min

Cache
Controller

Faulty state machine
transition

11/11/2015 11:56 PM
Cache controller sends

response of Fwd_GetM to
wrong destination

Zeyu 15min
Cache

Controller
A false default value is
assigned to destination

11/11/2015 12:35 AM
Faulty memory state after

execution
Yao &
Zeyu

35
min

Core
"Halt" is raised before

writing back cache data

11/11/2015 5:20 PM
Cannot end the execution of

the core until timeout
Yao &
Zeyu

30
min

Integration
Halt signal of the core is

not connected

Directory

11 bugs found

Average Debug Effort:

24.6 min/person

11/9/2015 7:50 AM
Directory does not consume

the GetM message
Yao

10
min

Directory
Faulty Write_en of the

virtual input buffer

11/9/2015 8:11 AM
Directory does not consume

the GetM message
Yao

15
min

Directory
Faulty Read_en and Reset

of the virtual input buffer

11/10/2015 4:30 PM
Directory does not return the

response to the GetM
message

Yao
20
min

Directory
Faulty state machine

transition

11/10/2015 4:50 PM
Directory does not return the

response to the GetM
message

Yao
10
min

Directory
Address is not given to

DMEM

11/10/2015 5:00 PM
Response to the GetM

message has unknown "ack"
signal

Yao
10
min

Directory "Ack" is not assigned

11/10/2015 6:00 PM
The GetS Message in
directory input buffer is

overwritten
Yao

30
min

Directory
Faulty logic of the

Write_en of the virtual
input buffer

8

11/10/2015 7:00 PM
Duplicates of responses to

GetS Message
Yao

20
min

Directory
Does not clear signals on

the interface

11/11/2015 11:00 AM
Directory does not consume

the written back Data
Yao

30
min

Directory
Faulty state machine

transition

11/11/2015 6:40 PM
Cache controller cannot

consume Fwd_GetM
Zeyu &

Yao
20min Directory

False destination of
Fwd_GetM is assigned

11/11/2015 8:40 PM
Cache controller cannot

consume Fwd_GetM
Zeyu &

Yao
35min Directory

Owner is not written
corresponding directory

entry

11/11/2015 9:35 PM
Faulty memory state after

execution
Zeyu &

Yao
45min Directory

The data in a PutM is not
written back to DMEM

With Inferno Date Time Problem
Debug
Person

Time
taken

Bug
Source

Bug Description

Router

6 bugs found

Average Debug Effort:

17.5 min/person

11/15/2015 9:00 PM
After sending several

messages using one channel,
channel completely corrupted

Xiangfei
30
min

Router
Incorrect flit sink scheme

in previous design

11/18/2015 1:00 PM
Received but virtual channel
changed during transmission

Xiangfei
&

Chenxi

10
min

Router VC allocator issue

11/19/2015 11:30 PM
Wrong requester encoded in

the transmitted message
Xiangfei

15
min

Router
Directory interface design

error

11/22/2015 10:00 AM
Didn't receive invalid_confim

message as expected
Xiangfei 5 min Router

Packet arrived, but forget
to identify the new added

message type

11/27/2015 10:43 AM
Do not receive requests at

destination node at receiver
side

Xiangfei
10
min

Router
Forget to put

drop_packet_ctrl signal
back to 1

11/28/2015 11:30 AM
Core keeps sending request,
but not arrive at destination

node

Xiangfei
&

Chenxi

30
min

Router
Virtual channel encryption

error after changing to
resilient

Core

17 bugs found

Average Debug Effort:

11.2 min/person

11/15/2105 3:00 PM Data message corrupted Xiangfei
20
min

Core
Sending data message

needs 3 cycles for Router
to process

11/15/2015 5:13 PM
State Transition from IS_D is

wrong
Zeyu

10
min

Cache
Controller

Used wrong signal as "if"
conditions

11/15/2015 6:17 PM
proc2router_dest signal sends

XX to router
Zeyu 3 min

Cache
Controller

The stall signal for FIFO is
not set to 1

11/15/2015 6:30 PM
State Transition from I to E is

wrong
Zeyu

17
min

Cache
Controller

Assignment to next state is
wrong

11/15/2015 7:39 PM current state is stuck at XX Zeyu
21
min

Cache
Controller

Assignment to current
state miss the

consideration of bus
command

11/15/2015 9:11 PM core didn't response fwd_getM Zeyu 9 min
Cache

Controller
Miss the process of

fwd_getM

11/15/2015 10:44 PM State stuck at IM_A Zeyu
21
min

Cache
Controller

Didn't take the ack
received at IM_AD state

into account

11/18/2015 3:16 PM Didn't send unblock signal Zeyu 9 min
Cache

Controller
The condition for sending

unblock is wrong

11/18/2015 5:07 PM
cache controller skip the store

command from core
Zeyu

19
min

Cache
Controller

the is_done signal sent to
core is wrong

11/18/2015 9:41 PM Data sent to router is wrong Zeyu 7 min
Cache

Controller
address sent to cache is

wrong

11/28/2015 2:00 PM
Always dropping the packet,
but the initiator node didn't
keep resending requests

Xiangfei
15
min

Core
Core's state machine

problem

9

11/29/2015 6:53 PM
unblock signal is not resent
when the core didn't receive

done for long time

Zeyu
Bu

11
min

Cache
Controller

The waiting time is set too
long

11/29/2015 8:39 PM
invalid permission is not resent

when the core didn't receive
ack for long time

Zeyu 7 min
Cache

Controller
Forgot reset the waiting

time

12/3/2015 4:14 PM
cannot stand duplicate inv_ack

signal
Zeyu 8 min

Cache
Controller

Should not use ack count
anymore

12/3/2015 5:49 PM Didn't go to Md state Zeyu 3 min
Cache

Controller
State transition condition

wrong

12/5/2015 9:27 PM
Data cannot be resent from E

state to S state
Zeyu 5 min

Cache
Controller

Didn't consider such
transition as robust

12/5/2015 11:38 PM
proc2router_dest signal sends

XX to router
Zeyu 6 min

Cache
Controller

buffer stall signal is not set
to 1 at previous state

Directory

13 bugs found

Average Debug Effort:

11.4 min/person

11/15/2015 11:30 PM
Invalidate message has wrong

requester field
Yao 5min Directory

Does not assign requester
field in that state

11/15/2015 11:40 PM
When directory is in M and
forwards a GetM, it directly

goes to stable M state
Yao 15min Directory

Does not add robust
feature in that situation

11/16/2015 9:42 AM
When directory is in S and

responds to a GetM, it directly
goes to stable M state

Yao 8min Directory
Does not add robust

feature in that situation

11/16/2015 10:15 AM
The repeated GetM message
is blocked by other requests in

the buffer
Yao 18min Directory

Should drop other
requests

11/16/2015 3:15 PM
Directory receives repeated
GetS but sends done back

Yao 18min Directory
Wrong "if else" block in

that state

11/16/2015 5:00 PM
When directory is in E and
forwards a GetM, it directly

goes to stable M state
Yao 15min Directory

Does not add robust
feature in that situation

11/17/2015 3:15 PM
When directory sends
Invalidate message to

unexpected node
Yao 13min Directory

Assign the wrong
destination

11/17/2015 4:20 PM

When directory is in S and
receives repeated GetM, it
does not resend invalidate

message

Yao 11min Directory Clear sharer list too early

12/3/2015 3:05 PM

When directory is in S and
receives repeated GetE, it
does not resend invalidate

message

Yao 10min Directory Clear sharer list too early

12/3/2015 3:45 PM
When directory is waiting for

one node's unblock, it
responds to other GetM

Yao 11min Directory

Directory mistakes it for a
repeated GetM because it

does not compare the
requester.

12/3/2015 4:05 PM
When directory is waiting for

one node's unblock, it
responds to other GetS

Yao 2min Directory

Directory mistakes it for a
repeated GetS because it

does not compare the
requester.

12/4/2015 3:45 PM
When directory receives a
repeated GetS, it sends an

invalid Data back
Yao 11min Directory

Directory does not retain
the data gotten from

memory

12/4/2015 4:21 PM
Directory receives an unblock

message, but sends Data
back.

Yao 9min Directory
Mistakes the unblock for a
repeated GetS because of

typo in that situation

