Motivation
- Multiprocessor architectures and platforms have been introduced due to more aggressive transistor scaling and larger performance gap between Moore’s Law and the art-of-design technology
- Network-on-chip is a general purpose communication concept that provides high throughput, but comes with high expense in both area and power
- Reducing area brings lower power consumption and less cost
- Network interface plays significant role in determining overall network-on-chip area

Proposed Solution
- The network interface only stores the head and the tail flits and the data are preserved in cache
- Data are allowed to transmit between the cache and the router directly

Comparison

<table>
<thead>
<tr>
<th>Components</th>
<th>Baseline</th>
<th>Our Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>N-way write-back, write-allocate cache</td>
<td>Communicate only with the network interface and the cache</td>
</tr>
<tr>
<td></td>
<td>Blocked until the transmission completes</td>
<td></td>
</tr>
<tr>
<td>Network Interface</td>
<td>Store head, data and tail flits</td>
<td>Only store head and tail flits</td>
</tr>
<tr>
<td>Router</td>
<td>Communicate only with the network interface</td>
<td>Communicate with both the network interface and the cache</td>
</tr>
</tbody>
</table>

Data Transmission Protocol
- When a cache miss happens on an invalid cache line, the cache will send an request to the processor to ask for the data from other caches.
 - Evict data
 - Send request for data
 - Receive data
- When a cache miss happens on a valid cache line, eviction of that cache line is needed first.
 - Evict data
 - Send request for data
 - Receive data
- Three typical types of data flow
 - Evict data
 - Send request for data
 - Receive data

Experimental Evaluation

<table>
<thead>
<tr>
<th></th>
<th>module baseline (µm²)</th>
<th>our design (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>512,292</td>
<td>518,037</td>
</tr>
<tr>
<td>network interface</td>
<td>179,558</td>
<td>31,518</td>
</tr>
</tbody>
</table>

- Synthesized the RTL codes by Synopsys Design Compiler
- The cache module is unmodified, so the area remains the same
- The area of the router increases by 1.1% due to the extra ports and control logic to communicate with the cache
- The area of the network interface is reduced by 6 times resulting from the buffer elimination

Performance
- We obtained memory access traces by running test cases on the EECS 470 processor
- We measured execution cycles by injecting traces to the caches
- Performance improvement ranges from 0.43% - 1.32%, with the average being 0.77%
- Performance improvement results from direct injection of data flits to the router without going to the network interface

Conclusion
- Our design successfully reduces the area of the network interface by 6 times, while keeping the cache the same and having an extremely low area overhead for router
- Our design does not degrade the performance but instead improves the performance with the average of 0.77%