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Abstract—Aggressive transistor scaling continues to increase 

integration capacity with each new technology node. In recent five 

years, however, the performance gap between Moore’s Law and the 

art-of-design technology is getting larger, and area and power 

concerns are drawing much more attention, especially for network-

on-chip design. Much attention has been paid on routers, and few 

on network interface. However, the storage of the data flits in the 

network interface causes an area overhead and therefore consumes 

more power. In this project, we propose eliminating buffers in the 

network interface and preserving the data in the cache instead to 

reduce overall area. From the simulation result, the proposed 

design reduces the area of the network interface by 6 times without 

degrading the performance. 

Keywords—Network interface, network-on-chip, area saving, 

buffer elimination 

I. INTRODUCTION 

Multiprocessor architectures and platforms have been 

introduced to keep up with the Moore’s law [1]. The general 

design trend in processor development has moved from dual- 

and quad-core processor chips to ones with tens and even 

hundreds of cores [2]. Network-on-Chip (NoC) is a general-

purpose on-chip communication concept that offers high 

throughput, which is the basic requirement to deal with 

complexity of modern systems. All links in NoC can be 

simultaneously used for data transmission, which provides a 

high level of parallelism and makes it attractive to replace the 

typical communication architectures like shared buses or 

point-to-point dedicated wires [3]. However, all of these 

advantages come with a high expense in both area and power. 

Many efforts have been put on routing algorithm 

optimization. Devices with different purposes have different 

requirements for routing algorithms. These various 

communication topologies for NoC architecture developed so 

far include mesh, torus, ring, butterfly, octagon and irregular 

interconnection networks [4]. It has no doubt that they all have 

their own strengths and many researchers have exploited them 

such as [5], [6] and [7].  

Router design enhancement has been paid much attention 

as well. The router contains buffers that consume 64% of the 

total node leakage power [8]. It is not a recent issue to 

enhance buffer management and most researchers have 

proposed methodologies that focus on buffer full utilization 

and optimization of buffer decoupling [9][10]. 

It should be observed also that in realistic NoC 

architectures, the network interface (NI) plays a significant 

role in determining overall NoC area, and a reduction in area 

means lower cost and less power consumption. Few 

researches have been made on NI area reduction. In [11], a TV 

companion chip was redesigned with a NoC as the 

interconnect fabric, and a 78% of increase in chip area was 

proved to come from the NIs. Among current few researches, 

some proposed ideas on network interface sharing, like [12]. 

However, [12] involves replication of the buffering resources 

in the NI, thus leading to an increase of the area, which hardly 

justifies this design choice [13]. Another approach delves into 

NI design and proposes reducing computation complexity 

[14]. It can make more sense with advanced communication 

technology, but that is not what our purpose is for the general 

approach we are going to propose in this paper. 

This paper focuses on reducing NI area by eliminating data 

buffers stored in NI and this approach can be supported with 

caches individual to each processor within a multiprocessor 

network. The rest of the paper is organized as follows. Section 

II presents the implementation of our design and Section III 

evaluates the experimental results on area and performance 

with the baseline design. Section VI introduces the future 

work of our project. Finally, Section V concludes the paper. 

II. PROPOSED APPROACH 

Instead of storing the data in the network interface, we 
propose to preserve the data in the cache. Hence, we modify 
the communication scheme to allow direct data transmission 
between the cache and the router. Thus, the network interface 
only stores the head and the tail flits of the packet. Fig. 1 shows 
the high-level architecture of the proposed design. 

The proposed design mainly involves modifying three 
components in an original NoC: network interface, router and 
cache. The rest of the session gives a brief introduction to these 
components and the transmission protocol between them.  

A. Network Interface 

The network interface stores two pairs of head and tail flits, 
corresponding to “send” and “receive” process respectively. 
The “send” process refers to sending data out of the cache to 
the router and the “receive” process is the opposite. The head 
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Fig. 1. High-level architecture of the proposed design. The network 
interface only stores the head and the tail flits of the packet and the data are 
preserved in the cache. Also, the data are allowed to transmit directly between 
the cache and the router. 

flit contains essential information when transmitting packets. 
It is composed of (1) source and destination coordinates 
within the network; (2) the number of data flits in one packet; 
and (3) the memory address of the leading data flits. In 
addition, the head flit contains several bits for identifying the 
type of the packet as well, such as one bit indicating whether it 
is a data request or eviction, and another one indicating 
whether it is an acknowledgement packet or not. The tail flit 
contains the same information as the head one except that the 
most significant bit is set to 0 to identify that it as a tail. The 
composition of the head/tail flit is shown in Fig. 2. The 
number of data flits in the packet is related to the packet type. 
If it is an acknowledgement or data request packet, the flit 
number is 0; otherwise, the flit number is 4.  

 

Fig. 2. Composition of the head/tail flit. The flit cosists of (1) whether it is a 
head or tail; (2) whether it is a data request or eviction; (3) whether it is an 
acknowledgement packet or not; (4) source and destination coordinates within 
the network; (5) the number of data flits in one packet; and (6) the memory 
address of the leading data flits.  

B. Router 

At the beginning of this project, we planned to use the 

Open Source Network-on-Chip Router RTL design from 

Stanford University [15], which is a parameterized RTL 

implementation of the state-of-art VC router. However, we did 

not choose to use their design for two reasons: (1) We do not 

need to include virtual channels to resolve deadlock for our 

2x2 mesh network. Instead, we implemented the routing 

algorithm as deterministic X-Y routing. (2) Since our design 

requires modifications to the router, it takes a lot of efforts to 

understand the original RTL codes and modify them in order 

to support communication with the cache. Therefore, we 

decided to design and implement the router ourselves. 

For the router we designed, it applies packet-based flow 

control, and is store and forward to be specific. It means that 

the head flit waits at the router until the entire packet is 

received before being forwarded to the next hop. Although 

store and flow is not the state-of-art design choice for routers 

and per-hop routing latency is large, it is not a concern for this 

project as long as the baseline also uses the same flow control. 

It is more straightforward to implement store and forward 

control flow as well. The routing algorithm is circuit-based 

deterministic X-Y routing. In order to for the router to have 

direct communication with the cache, data ports and other 

control signal ports are augmented to the baseline router 

design and more control logic is added. 

C. Cache 

The L1 cache is implemented as an N-way write-back, 
write-allocate cache. When a read or write instruction comes, 
there are three conditions for the cache: cache hit, cache miss 
on an invalid cache line and cache miss on a valid cache line. 
The cache handles these conditions using the finite state 
machine shown in Fig. 3.  
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Fig. 3. Finite state machine of the cache. Intially, the cache is in idle state 
and stays in the state unless a cache miss happens. If a cache miss happens on 
an invalid cache line, the cache will enter the “Write Back” state waiting for 
the requested data to be retrieved. If a cache miss happens on a valid cache 
line, the cache will enter the “Eviction” state to evict the cache line first and 
then go to the “Write Back” state. The cache is blocked until the data 
transmission completes. 

If it is a cache hit, the cache will transmit the data to the 
processor for a read or store the data to the corresponding 
cache line for a write to complete the execution. If a cache miss 
happens on an invalid cache line, the cache will enter the state 
waiting for the requested data to be retrieved. If a cache miss 
happens on a valid cache line, the cache will evict the cache 
line first and then wait for the requested data. The cache is 
blocked until the data transmission completes. 

The implementation of the cache and the cache controller 
are completely the same for the proposed design and the 
baseline except that the read and the write ports are connected 
to the router instead of the network interface.  

D. Data Transmission Protocol 

Since data do not need to be stored in the network interface 
anymore, the data transmission protocol is modified to support 
transmission of data between the cache and the router directly. 
If it is a cache hit, the network interface and the channel for 
this core in the router will be kept in the idle state. However, if 
a cache miss happens, data start to transmit within the network. 
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When a cache miss happens on an invalid cache line, the 
cache will send a data request to the network interface asking 
for data from the memory. The network interface generates the 
head and tail flits containing the information of the request and 
then sends them to the router when the router is available. 
Once the router receives the tail, it passes the request to the 
destination node. The data flow of sending a data request 
packet is shown in Fig. 4.  
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Fig. 4. Data flow of sending a data request packet. The cache sends data 
request to the network interface first. Then, the network interface generates 
the head and tail flits containing the information of the request and sends them 
one by one to the router which passes them to the destination node when the 
tail is received. 

When the destination router receives the request, it will 
give the head and tail flits to the network interface. The 
network interface generates the new head and tail flits 
according to the received head flits and then sends the new 
ones to the router. After the router receives the new head flit, it 
reads the data flits one by one from the cache and completes 
the packet on receiving the tail from the network interface. 
Extracted from the received head, the address of the data flits is 
provided by the network interface. Later, the router sends the 
packet containing the requested data back to the source node. 

After the source router receives the packet, it first sends the 
head flit to the network interface. The network interface then 
deconstructs the head flit to obtain the data address and signals 
the cache to receive data from the router. Once the cache 
receives all data, the router sends the tail to the network 
interface to signal the end of the process. The data flow of 
receiving a data packet is shown in Fig. 5.  
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Fig. 5. Data flow of receiving a data packet. The router first sends the head 
flit to the network interface. The network interface then deconstructs the head 
flit to obtain the data address and signals the cache to receive data from the 
router. Once the cache receives all data, the router sends the tail to the 
network interface to signal the end of the process. 

Fig. 6 summarizes the whole data transmission process 
when a cache miss happens on an invalid cache line.  

Source Destination

Send data request Send requested data

Receive requested data  

Fig. 6. Cache miss on an invalid cache line. The source node sends packet to 
the destination node to request data. Then the desitination node sends the 
corresponding data accordding to the request packet to the source node. 

When a cache miss happens on a valid cache line, eviction 
of that cache line is needed first. The cache sends an eviction 
request and the corresponding eviction address to the network 
interface. Then, the network interface constructs the head and 
tail flits based on the eviction address. Once the head flit is 
successfully sent to the router, the network interface signals the 
cache to start sending data flit by flit to the router. After the 
router receives all the data, it signals the network interface to 
send the tail to it. When the router gets the whole packet, it 
starts to send the packet to the destination. The data flow of 
sending an evicting data packet is shown in Fig. 7. 
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Fig. 7. Data flow of sending an evicting data packet. The cache sends an 
eviction request and the eviction address to the network interface. Then, the 
network interface constructs the head and tail flits. The router first receives 
the head from the network interface and then asks the cache for data. When 
the tail arrives, it sends the whole packet to the destination.   

The destination node receives the packet according to the 
process indicated in Fig. 5 first. When the receiving process 
completes, the network interface constructs an 
acknowledgement packet and transmits it to the source through 
routers. Once receiving the acknowledgement, the evicted 
cache line is invalidated and a data request packet is sent as 
shown in Fig. 4. The following process is the same as the cache 
miss on an invalid cache line. The overall process for this 
situation is shown in Fig. 8.   
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Fig. 8. Cache miss on a valid cache line. The source node first sends evicted 
data to the destination node which sends an acknowledgement back to signal 
successfully reception to the source. The following steps is the same as Fig. 4.  
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The acknowledge signal is implemented to ensure that the 
evicted data are invalidated from the cache only after they have 
been written back to the memory. In this way, the data will not 
be lost if the transmission fails.  

III. EVALUATION 

The goal of our evaluation is to determine the area and 
performance of our design compared with the baseline. This 
session includes a brief overview of the baseline design, area 
evaluation and performance evaluation. 

A. Baseline 

All evaluations are conducted comparing to the baseline 
within the same network. In this baseline design, the network 
interface stores data flits in its buffer, and is in charge of 
transferring data flits to and from the router. The router thus 
has no communication channel with the cache, and the cache 
connects only to the network interface as well. No major 
changes are made to the cache between the baseline and our 
design. At current stage, we do not include acknowledgement 
in the baseline design for simplicity. Comparison results 
between the baseline and our design are shown in table 1. 

TABLE 1. COMPARISION RESULTS 

 

B. Area Evaluation 

To compare the area of the baseline and our design, we 
synthesized the modules using Synopsys Design Compiler to 
obtain the actual area estimations. The technology that this 
compiler uses is 130 nm. We did not change the L1 cache 
module at all and only the connection is changed, e.g. the 
output data port is connected with the network interface in the 
baseline and it is connected with the router in our design. Thus, 
the area of the cache is not changed from the baseline to our 
design. The synthesized area results for the network interface 
and the router are shown in table 2. 

TABLE 2. SYNTHESIZED AREA RESULTS 

Area Evaluation 

module baseline (µm2) our design (µm2) 

router 512,292 518,037 

network interface 179,558 31,518 

 From the table, we can see that the area overhead of the 
router is extremely small. The reason is that the storage of the 
data flits takes up most of the area and adding ports and control 
logic to the baseline router does not make a huge impact on the 
overall router area. Another observation is that the area of the 
network interface is reduced by almost six times. This is 
achieved by network interface buffer elimination and it 
successfully proves the concept of our design. The last point is 
that we believe that the power consumption will be reduced as 
the overall area decreases. We do not have the tool for the 
power measurement for now, so we leave it as a future work.  

Overall, the reduction of the area in the network interface is 
far greater than the increase of the area in the router. Hence, 
there is a reduction in the total area for our design. 

C. Performance Evaluation 

Besides of the area evaluation, we want to see whether the 
design will cause any performance overhead or not. Since our 
design does not include any processor cores, traces are needed 
as the inputs for the caches. We obtained the memory access 
traces and cycle delays between memory accesses by running 
test cases on the EECS 470 project. Then we injected memory 
accesses and delays between these accesses to both our design 
and the baseline and measured the total execution cycles. 

First, we injected memory accesses with delay cycles 
between them for three cores with the same test case mapping 
to different portions of memory and the associativity of the 
cache is 4-way. The result is shown in Fig. 9. From the figure, 
it is clear to see that our design does not result in any 
performance overhead and instead it improves the performance 
a little. The performance improvement ranges from 0.28% - 
1.54%, with the average being 0.61%. The direct 
communication between the L1 cache and the router without 
going through the network interface reduces the packet 
injection and packet reception latency. Take evicting four flits 
of a cache line as an example. The baseline requires all the flits 
sent to the network interface before going to the router while 
the router of our design gets the body flits directly from the 
cache, which saves four cycles for the packet injection. 

 

Fig. 9. Results from running on 3 cores with 4-way associative cache. Our 
design has a slight performance improvement over the baseline. The average 
performance improvement is 0.61%. 
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Next, we changed the associativity of the cache from 4-way 
to 2-way and the result is shown in Fig 10. The observation is 
similar. The execution cycles increase for some test cases due 
to the increased evictions resulting from the low associativity. 
This time, the performance improvement ranges from 0.43% - 
0.77%, with the average of 0.16%. The reason behind this is 
that more evictions exist for 2-way associative cache and an 
eviction saves a few cycles, so more evictions results in greater 
performance improvement. 

 

Fig. 10. Results from running on 3 cores with 2-way associative cache. The 
average performance improvement is 0.77%. The increase of the performance 
improvement is due to the increased evictions. 

Last, we want to show how our design performs when a 
single core runs. The test cases are picked among those that 
have a large number of memory accesses. The result is shown 
in Fig. 11. Our design still outperforms the baseline. The 
average performance improvement is 4.91%. The performance 
improvement for one core is far greater than the performance 
improvement for three cores. The reason is that for three cores, 
when one core is not issuing memory accesses, the latencies of 
memory accesses from other cores can be hidden during this 
memory idle window. 

 

Fig. 11. Running on 1 core with 2-way associative cache. We pick test cases 
with many memory accesses. The average performance is 4.91%, far greater 
than the performance improvement running on 3 cores due to the latency hiding 
in the 3 cores. 

To summarize, our design has no performance overhead 
and instead has a small performance improvement. The 
improvement exists due to the use of blocking cache. If the 
non-blocking cache is used, extra performance overhead would 
be introduced. In that case, our design might have a small 
performance overhead compared to the baseline. 

IV. FUTURE WORK 

 
The future work can be explored in the following 

directions.  

(1) We implemented the simplest 2x2 mesh to prove the 
feasibility of the proposed approach, so the design can be 
expanded to larger network in the future.   

(2) The proposed approach can only detect the error for 
evicted data loss, so more effort can be put on checking more 
types of error such as misrouted packet, and implemented 
recovery mechanism to improve the reliability. 

(3) For simplicity, the flow control of the proposed router is 
store and forward, which can be changed to wormhole to 
improve the performance in the future. 

(4) To improve the performance further, the proposed 
design can be modified to apply to the non-blocking cache.  

V. CONCLUSION 

As the performance gap between Moore’s law and the art-
of-design technology gets larger, multiprocessor architectures 
and platforms have been drawing much more attention. 
Network-on-chip is a general-purpose on-chip communication 
concept, which is the basic requirement to deal with 
complexity of modern system. Both area and performance are 
critical issues and the network interface influences a lot within 
the network.  

In this paper, we propose a method that can reduce the 
network interface by 6x compared to the baseline design by 
eliminating data buffers. It is also worth notice that this change 
of design for network interface does not degrade the overall 
performance according to our evaluation. More memory access 
intensive test cases can be conducted to have a more thorough 
analysis on our design. At this stage, we conclude that by 
eliminating the data buffer in network interface and preserving 
all data flits in cache, the area of the network interface is 
decreases by 6 times while the performance does not degrade. 
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