
1

Network Interface Buffer Elimination
EECS 578 Final Report

Qilu Guo, Jing Ji, Jiong Xue

Department of Electrical and Computer Engineering

University of Michigan, Ann Arbor, MI 48109, USA

{qiluguo, silverji, xuejiong} @umich.edu

Abstract—Aggressive transistor scaling continues to increase

integration capacity with each new technology node. In recent five

years, however, the performance gap between Moore’s Law and the

art-of-design technology is getting larger, and area and power

concerns are drawing much more attention, especially for network-

on-chip design. Much attention has been paid on routers, and few

on network interface. However, the storage of the data flits in the

network interface causes an area overhead and therefore consumes

more power. In this project, we propose eliminating buffers in the

network interface and preserving the data in the cache instead to

reduce overall area. From the simulation result, the proposed

design reduces the area of the network interface by 6 times without

degrading the performance.

Keywords—Network interface, network-on-chip, area saving,

buffer elimination

I. INTRODUCTION

Multiprocessor architectures and platforms have been

introduced to keep up with the Moore’s law [1]. The general

design trend in processor development has moved from dual-

and quad-core processor chips to ones with tens and even

hundreds of cores [2]. Network-on-Chip (NoC) is a general-

purpose on-chip communication concept that offers high

throughput, which is the basic requirement to deal with

complexity of modern systems. All links in NoC can be

simultaneously used for data transmission, which provides a

high level of parallelism and makes it attractive to replace the

typical communication architectures like shared buses or

point-to-point dedicated wires [3]. However, all of these

advantages come with a high expense in both area and power.

Many efforts have been put on routing algorithm

optimization. Devices with different purposes have different

requirements for routing algorithms. These various

communication topologies for NoC architecture developed so

far include mesh, torus, ring, butterfly, octagon and irregular

interconnection networks [4]. It has no doubt that they all have

their own strengths and many researchers have exploited them

such as [5], [6] and [7].

Router design enhancement has been paid much attention

as well. The router contains buffers that consume 64% of the

total node leakage power [8]. It is not a recent issue to

enhance buffer management and most researchers have

proposed methodologies that focus on buffer full utilization

and optimization of buffer decoupling [9][10].

It should be observed also that in realistic NoC

architectures, the network interface (NI) plays a significant

role in determining overall NoC area, and a reduction in area

means lower cost and less power consumption. Few

researches have been made on NI area reduction. In [11], a TV

companion chip was redesigned with a NoC as the

interconnect fabric, and a 78% of increase in chip area was

proved to come from the NIs. Among current few researches,

some proposed ideas on network interface sharing, like [12].

However, [12] involves replication of the buffering resources

in the NI, thus leading to an increase of the area, which hardly

justifies this design choice [13]. Another approach delves into

NI design and proposes reducing computation complexity

[14]. It can make more sense with advanced communication

technology, but that is not what our purpose is for the general

approach we are going to propose in this paper.

This paper focuses on reducing NI area by eliminating data

buffers stored in NI and this approach can be supported with

caches individual to each processor within a multiprocessor

network. The rest of the paper is organized as follows. Section

II presents the implementation of our design and Section III

evaluates the experimental results on area and performance

with the baseline design. Section VI introduces the future

work of our project. Finally, Section V concludes the paper.

II. PROPOSED APPROACH

Instead of storing the data in the network interface, we
propose to preserve the data in the cache. Hence, we modify
the communication scheme to allow direct data transmission
between the cache and the router. Thus, the network interface
only stores the head and the tail flits of the packet. Fig. 1 shows
the high-level architecture of the proposed design.

The proposed design mainly involves modifying three
components in an original NoC: network interface, router and
cache. The rest of the session gives a brief introduction to these
components and the transmission protocol between them.

A. Network Interface

The network interface stores two pairs of head and tail flits,
corresponding to “send” and “receive” process respectively.
The “send” process refers to sending data out of the cache to
the router and the “receive” process is the opposite. The head

2

Router L1 cache

RouterRouter

Router

N.I.
Tx_H
Tx_T

Rx_H
Rx_T

N.I.
Tx_H
Tx_T

Rx_H
Rx_T

L1 cache

L1 cache

N.I.

Tx_H
Tx_T

Rx_H
Rx_T

N.I.

Tx_H
Tx_T

Rx_H
Rx_T

Memory

Fig. 1. High-level architecture of the proposed design. The network
interface only stores the head and the tail flits of the packet and the data are
preserved in the cache. Also, the data are allowed to transmit directly between
the cache and the router.

flit contains essential information when transmitting packets.
It is composed of (1) source and destination coordinates
within the network; (2) the number of data flits in one packet;
and (3) the memory address of the leading data flits. In
addition, the head flit contains several bits for identifying the
type of the packet as well, such as one bit indicating whether it
is a data request or eviction, and another one indicating
whether it is an acknowledgement packet or not. The tail flit
contains the same information as the head one except that the
most significant bit is set to 0 to identify that it as a tail. The
composition of the head/tail flit is shown in Fig. 2. The
number of data flits in the packet is related to the packet type.
If it is an acknowledgement or data request packet, the flit
number is 0; otherwise, the flit number is 4.

Fig. 2. Composition of the head/tail flit. The flit cosists of (1) whether it is a
head or tail; (2) whether it is a data request or eviction; (3) whether it is an
acknowledgement packet or not; (4) source and destination coordinates within
the network; (5) the number of data flits in one packet; and (6) the memory
address of the leading data flits.

B. Router

At the beginning of this project, we planned to use the

Open Source Network-on-Chip Router RTL design from

Stanford University [15], which is a parameterized RTL

implementation of the state-of-art VC router. However, we did

not choose to use their design for two reasons: (1) We do not

need to include virtual channels to resolve deadlock for our

2x2 mesh network. Instead, we implemented the routing

algorithm as deterministic X-Y routing. (2) Since our design

requires modifications to the router, it takes a lot of efforts to

understand the original RTL codes and modify them in order

to support communication with the cache. Therefore, we

decided to design and implement the router ourselves.

For the router we designed, it applies packet-based flow

control, and is store and forward to be specific. It means that

the head flit waits at the router until the entire packet is

received before being forwarded to the next hop. Although

store and flow is not the state-of-art design choice for routers

and per-hop routing latency is large, it is not a concern for this

project as long as the baseline also uses the same flow control.

It is more straightforward to implement store and forward

control flow as well. The routing algorithm is circuit-based

deterministic X-Y routing. In order to for the router to have

direct communication with the cache, data ports and other

control signal ports are augmented to the baseline router

design and more control logic is added.

C. Cache

The L1 cache is implemented as an N-way write-back,
write-allocate cache. When a read or write instruction comes,
there are three conditions for the cache: cache hit, cache miss
on an invalid cache line and cache miss on a valid cache line.
The cache handles these conditions using the finite state
machine shown in Fig. 3.

Idle

Eviction Write Back

cache hit

cache miss &&

cache line invalid

=> request data

cache miss &&

cache line valid

=> evict data

router read

=> send data to router

evict ready (receive ack)

=> request data

router write

=> receive data from router

write back ready

=> transmission finishes

Fig. 3. Finite state machine of the cache. Intially, the cache is in idle state
and stays in the state unless a cache miss happens. If a cache miss happens on
an invalid cache line, the cache will enter the “Write Back” state waiting for
the requested data to be retrieved. If a cache miss happens on a valid cache
line, the cache will enter the “Eviction” state to evict the cache line first and
then go to the “Write Back” state. The cache is blocked until the data
transmission completes.

If it is a cache hit, the cache will transmit the data to the
processor for a read or store the data to the corresponding
cache line for a write to complete the execution. If a cache miss
happens on an invalid cache line, the cache will enter the state
waiting for the requested data to be retrieved. If a cache miss
happens on a valid cache line, the cache will evict the cache
line first and then wait for the requested data. The cache is
blocked until the data transmission completes.

The implementation of the cache and the cache controller
are completely the same for the proposed design and the
baseline except that the read and the write ports are connected
to the router instead of the network interface.

D. Data Transmission Protocol

Since data do not need to be stored in the network interface
anymore, the data transmission protocol is modified to support
transmission of data between the cache and the router directly.
If it is a cache hit, the network interface and the channel for
this core in the router will be kept in the idle state. However, if
a cache miss happens, data start to transmit within the network.

3

When a cache miss happens on an invalid cache line, the
cache will send a data request to the network interface asking
for data from the memory. The network interface generates the
head and tail flits containing the information of the request and
then sends them to the router when the router is available.
Once the router receives the tail, it passes the request to the
destination node. The data flow of sending a data request
packet is shown in Fig. 4.

NI Router

proc_rd/wr

proc_addr

req_data

proc_addr

head/tail
To

destination

Cache Valid = 0 Dirty = 0 Tag Data

Fig. 4. Data flow of sending a data request packet. The cache sends data
request to the network interface first. Then, the network interface generates
the head and tail flits containing the information of the request and sends them
one by one to the router which passes them to the destination node when the
tail is received.

When the destination router receives the request, it will
give the head and tail flits to the network interface. The
network interface generates the new head and tail flits
according to the received head flits and then sends the new
ones to the router. After the router receives the new head flit, it
reads the data flits one by one from the cache and completes
the packet on receiving the tail from the network interface.
Extracted from the received head, the address of the data flits is
provided by the network interface. Later, the router sends the
packet containing the requested data back to the source node.

After the source router receives the packet, it first sends the
head flit to the network interface. The network interface then
deconstructs the head flit to obtain the data address and signals
the cache to receive data from the router. Once the cache
receives all data, the router sends the tail to the network
interface to signal the end of the process. The data flow of
receiving a data packet is shown in Fig. 5.

NI Router

addr

head/tail

data

From source

Cache Valid = 1 Dirty = 1 Tag Data

Fig. 5. Data flow of receiving a data packet. The router first sends the head
flit to the network interface. The network interface then deconstructs the head
flit to obtain the data address and signals the cache to receive data from the
router. Once the cache receives all data, the router sends the tail to the
network interface to signal the end of the process.

Fig. 6 summarizes the whole data transmission process
when a cache miss happens on an invalid cache line.

Source Destination

Send data request Send requested data

Receive requested data

Fig. 6. Cache miss on an invalid cache line. The source node sends packet to
the destination node to request data. Then the desitination node sends the
corresponding data accordding to the request packet to the source node.

When a cache miss happens on a valid cache line, eviction
of that cache line is needed first. The cache sends an eviction
request and the corresponding eviction address to the network
interface. Then, the network interface constructs the head and
tail flits based on the eviction address. Once the head flit is
successfully sent to the router, the network interface signals the
cache to start sending data flit by flit to the router. After the
router receives all the data, it signals the network interface to
send the tail to it. When the router gets the whole packet, it
starts to send the packet to the destination. The data flow of
sending an evicting data packet is shown in Fig. 7.

NI Router

proc_rd/wr

proc_addr

evict_req

evict_addr

head/tail

evict_data

To

destination

Cache Valid = 1 Dirty = 1 Tag Data

Fig. 7. Data flow of sending an evicting data packet. The cache sends an
eviction request and the eviction address to the network interface. Then, the
network interface constructs the head and tail flits. The router first receives
the head from the network interface and then asks the cache for data. When
the tail arrives, it sends the whole packet to the destination.

The destination node receives the packet according to the
process indicated in Fig. 5 first. When the receiving process
completes, the network interface constructs an
acknowledgement packet and transmits it to the source through
routers. Once receiving the acknowledgement, the evicted
cache line is invalidated and a data request packet is sent as
shown in Fig. 4. The following process is the same as the cache
miss on an invalid cache line. The overall process for this
situation is shown in Fig. 8.

Source Destination

Evict data Receive evicted data

Send

acknowledgement

Receive

acknowledgement

Send data request Send requested data

Receive requested data

Fig. 8. Cache miss on a valid cache line. The source node first sends evicted
data to the destination node which sends an acknowledgement back to signal
successfully reception to the source. The following steps is the same as Fig. 4.

4

The acknowledge signal is implemented to ensure that the
evicted data are invalidated from the cache only after they have
been written back to the memory. In this way, the data will not
be lost if the transmission fails.

III. EVALUATION

The goal of our evaluation is to determine the area and
performance of our design compared with the baseline. This
session includes a brief overview of the baseline design, area
evaluation and performance evaluation.

A. Baseline

All evaluations are conducted comparing to the baseline
within the same network. In this baseline design, the network
interface stores data flits in its buffer, and is in charge of
transferring data flits to and from the router. The router thus
has no communication channel with the cache, and the cache
connects only to the network interface as well. No major
changes are made to the cache between the baseline and our
design. At current stage, we do not include acknowledgement
in the baseline design for simplicity. Comparison results
between the baseline and our design are shown in table 1.

TABLE 1. COMPARISION RESULTS

B. Area Evaluation

To compare the area of the baseline and our design, we
synthesized the modules using Synopsys Design Compiler to
obtain the actual area estimations. The technology that this
compiler uses is 130 nm. We did not change the L1 cache
module at all and only the connection is changed, e.g. the
output data port is connected with the network interface in the
baseline and it is connected with the router in our design. Thus,
the area of the cache is not changed from the baseline to our
design. The synthesized area results for the network interface
and the router are shown in table 2.

TABLE 2. SYNTHESIZED AREA RESULTS

Area Evaluation

module baseline (µm2) our design (µm2)

router 512,292 518,037

network interface 179,558 31,518

 From the table, we can see that the area overhead of the
router is extremely small. The reason is that the storage of the
data flits takes up most of the area and adding ports and control
logic to the baseline router does not make a huge impact on the
overall router area. Another observation is that the area of the
network interface is reduced by almost six times. This is
achieved by network interface buffer elimination and it
successfully proves the concept of our design. The last point is
that we believe that the power consumption will be reduced as
the overall area decreases. We do not have the tool for the
power measurement for now, so we leave it as a future work.

Overall, the reduction of the area in the network interface is
far greater than the increase of the area in the router. Hence,
there is a reduction in the total area for our design.

C. Performance Evaluation

Besides of the area evaluation, we want to see whether the
design will cause any performance overhead or not. Since our
design does not include any processor cores, traces are needed
as the inputs for the caches. We obtained the memory access
traces and cycle delays between memory accesses by running
test cases on the EECS 470 project. Then we injected memory
accesses and delays between these accesses to both our design
and the baseline and measured the total execution cycles.

First, we injected memory accesses with delay cycles
between them for three cores with the same test case mapping
to different portions of memory and the associativity of the
cache is 4-way. The result is shown in Fig. 9. From the figure,
it is clear to see that our design does not result in any
performance overhead and instead it improves the performance
a little. The performance improvement ranges from 0.28% -
1.54%, with the average being 0.61%. The direct
communication between the L1 cache and the router without
going through the network interface reduces the packet
injection and packet reception latency. Take evicting four flits
of a cache line as an example. The baseline requires all the flits
sent to the network interface before going to the router while
the router of our design gets the body flits directly from the
cache, which saves four cycles for the packet injection.

Fig. 9. Results from running on 3 cores with 4-way associative cache. Our
design has a slight performance improvement over the baseline. The average
performance improvement is 0.61%.

5

Next, we changed the associativity of the cache from 4-way
to 2-way and the result is shown in Fig 10. The observation is
similar. The execution cycles increase for some test cases due
to the increased evictions resulting from the low associativity.
This time, the performance improvement ranges from 0.43% -
0.77%, with the average of 0.16%. The reason behind this is
that more evictions exist for 2-way associative cache and an
eviction saves a few cycles, so more evictions results in greater
performance improvement.

Fig. 10. Results from running on 3 cores with 2-way associative cache. The
average performance improvement is 0.77%. The increase of the performance
improvement is due to the increased evictions.

Last, we want to show how our design performs when a
single core runs. The test cases are picked among those that
have a large number of memory accesses. The result is shown
in Fig. 11. Our design still outperforms the baseline. The
average performance improvement is 4.91%. The performance
improvement for one core is far greater than the performance
improvement for three cores. The reason is that for three cores,
when one core is not issuing memory accesses, the latencies of
memory accesses from other cores can be hidden during this
memory idle window.

Fig. 11. Running on 1 core with 2-way associative cache. We pick test cases
with many memory accesses. The average performance is 4.91%, far greater
than the performance improvement running on 3 cores due to the latency hiding
in the 3 cores.

To summarize, our design has no performance overhead
and instead has a small performance improvement. The
improvement exists due to the use of blocking cache. If the
non-blocking cache is used, extra performance overhead would
be introduced. In that case, our design might have a small
performance overhead compared to the baseline.

IV. FUTURE WORK

The future work can be explored in the following

directions.

(1) We implemented the simplest 2x2 mesh to prove the
feasibility of the proposed approach, so the design can be
expanded to larger network in the future.

(2) The proposed approach can only detect the error for
evicted data loss, so more effort can be put on checking more
types of error such as misrouted packet, and implemented
recovery mechanism to improve the reliability.

(3) For simplicity, the flow control of the proposed router is
store and forward, which can be changed to wormhole to
improve the performance in the future.

(4) To improve the performance further, the proposed
design can be modified to apply to the non-blocking cache.

V. CONCLUSION

As the performance gap between Moore’s law and the art-
of-design technology gets larger, multiprocessor architectures
and platforms have been drawing much more attention.
Network-on-chip is a general-purpose on-chip communication
concept, which is the basic requirement to deal with
complexity of modern system. Both area and performance are
critical issues and the network interface influences a lot within
the network.

In this paper, we propose a method that can reduce the
network interface by 6x compared to the baseline design by
eliminating data buffers. It is also worth notice that this change
of design for network interface does not degrade the overall
performance according to our evaluation. More memory access
intensive test cases can be conducted to have a more thorough
analysis on our design. At this stage, we conclude that by
eliminating the data buffer in network interface and preserving
all data flits in cache, the area of the network interface is
decreases by 6 times while the performance does not degrade.

ACKNOWLEDGMENT

We would like to thank Professor Valeria Bertacco for her
instructions and support that guide us through the research
process. We would also like to express our deepest thank to our
GSI Doowon Lee for his kind help that always comes in time.

REFERENCES

[1] Ankur Agarwal, Cyril Iskander, Ravi Shankar. Survey of Network on
Chip (NoC) Architectures and Contributions. Journal of Engineering,
Computing and Architecture, vol 3, 2009

[2] Rakesh, K., Timothy, G.M., Gilles, P., Rob, V.D.W.: The Case for
Message Passing on Many-Core Chips. Multiprocessor System-on-Chip,
pp. 115–123 (2011)

[3] Latif, K., Seceleanu, T., & Tenhunen, H. (n.d.). Power and Area
Efficient Design of Network-on-Chip Router through Utilization of Idle
Buffers. 2010 17th IEEE International Conference and Workshops on
Engineering of Computer Based Systems.

[4] J.Dally and B. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2004.

6

[5] D. Kim, Manho Kim, and G.E. Sobelman, “CDMA-based NoC
architecture”, Proc. IEEE Conference on Circuits and Systems, vol. 1,
pp. 137-140, 2004.

[6] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C.A.
Zeferino, “SPIN: a scalable, packet switched, on-chip micro-network,
Proc. IEEE Conference on Design, Automation and Test, pp. 70-73,
2003.

[7] F. Karim A. Nguyen, and S. Dey, “An interconnect architecture for
networking systems on chips”, IEEE Journal on Micro High
Performance Interconnect, vol. 22, issue 5, pp. 36-45, Sept 2002.

[8] Xuning Chen and Li-Shiuan Peh. Leakage power modeling and
optimization of interconnection net- works. Proceedings of International
Symposium on Low Power Electronics and Design, pp. 9095, 2003.

[9] Ying-Cherng Lan, Shih-Hsin Lo, Yueh-Chi Lin, Yu- Hen Hu, Sao-Jie
Chen. BiNoC: A bidirectional NoC architecture with dynamic self-
reconfigurable channel. Proceedings of 3rd ACM/IEEE International
Sympo- sium on Networks-on-Chip (NoCS), pp.266-275, May 2009.

[10] M. Coenen et. all. A buffer-sizing algorithm for net- works on chip
using TDMA and credit-based end-to- end flow control. Proceedings of

the 4th international conference on Hardware/software codesign and
system synthesis (CODES+ISSS), pp.130-135, October 2006.

[11] F.Steenhof et al., Networks on Chips for high-end consumer- electronics
TV system architectures, DATE, 2006, pp.148-153.

[12] A.Radulescu, J.Dielissen, K.Goossens, E.Rijpkema, P.Wielage, An
Efficient On-Chip Network Interface Offering Guaranteed Services,
Shared-Memory Abstraction, and Flexi- ble Network Configuration,
DATE 2004, pp.873-883.

[13] Ferrante, A., Medardoni, S., & Bertozzi, D. (n.d.). Network Interface
Sharing Techniques for Area Optimized NoC Architectures. 2008 11th
EUROMICRO Conference on Digital System Design Architectures,
Methods and Tools.

[14] Kim et al., Solutions for Real Chip Implementation Issues of NoC and
Their Application to Memory-Centric NoC, Int. Symp. on Networks-on-
Chip, pp.30-39, 2007.

[15] Open Source Network-on-Chip Router RTL,
http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router

http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router

