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Abstract—With the exponential growth of data, data-intensive
applications are becoming common in CMPs. Such applications
are mostly written using MapReduce programming model, be-
cause it provides simple programming interface. The underlying
interconnect in CMPs is network-on-chip(NoC). Due to extreme
device scaling, link failure in NoCs is becoming a common
scenario. Link failures leads to an irregular network topology.
MapReduce frameworks like Phoenix++ are written based on an
assumption of a robust regular network topology. For commu-
nication bound applications, irregular network topology leads
to inefficient execution of MapReduce applications. Both the
mapping phase and reducing phase of MapReduce applications
provide opportunity for load balancing based on the connectivity
of a node to the rest of the system. In this project, we proposed
and evaluated novel load balancing algorithm in both phases of
MapReduce. We found that depending on the communication to
computation ratio and the number of unique keys of workloads,
the execution time and network latency can be significantly
improved.

I. INTRODUCTION

MapReduce is a programming model which provides pro-
grammers with a simple abstraction to implement a wide range
of data-intensive applications. MapReduce programmers write
an application using two simple functions. The functions are
called map and reduce functions. The map function process
the input data and emits intermediate key-value pairs. The
reduce function aggregates each set of intermediate key-values
pairs associated with the same key. The MapReduce framework
then automatically handles the partitioning of the input data,
the scheduling of the map and reduce tasks to the available
processors in the system, and the exchange of intermediate
key-value pairs among the reducers. The MapReduce model
is currently one of the most popular programming paradigms
for big-data applications, and it constitutes the backbone of
many important problems within the areas of image processing,
artificial intelligence, web search engines, genome sequencing,
among many others. However, the exponential increase in the
amount of data generated is compounding the challenges of
big data applications, as we strive to find efficient ways to sort
through this data, analyze it and meaningfully make use of it.
Thus, developing frameworks that support the high-performance
execution of MapReduce-based applications is a critical step
towards overcoming these massive big-data challenges.

The original implementation of MapReduce, first introduced
by Google [4], was developed to run on computer clusters.
However, MapReduce is also increasingly being adopted
on various other computing infrastructures, such as chip-
multiprocessors (CMPs). The growing number of cores in

CMP designs provides a highly-parallel computing platform
that can be leveraged to run MapReduce applications in parallel
and achieve fast execution speeds.

The continuous shrinking of transistors has made ensuring
reliability a challenge. As transistors become more fragile,
wear-out becomes common. Since MapReduce applications
split workload among cores, communication between nodes
plays a significant role. Permanent link failures in the NoC
may be a hindrance to communication and hence cause the
entire chip to malfunction. Applications running on irregular
topology will be subject to increased communication latency
due to congestion that can potentially slow down execution
time.

Our paper identifies and analyzes sources of inefficiencies
in both the map and reduce phases caused by execution on an
irregular topology. Specifically, we categorize each phase of
an application as being either communication or computation
bound and note that a communication bound phases generates
read requests at a higher rate creating network congestion. Our
analysis show that the reduce phase is more sensitive to the
network topology due to the all to all exchange of key value
pairs that occurs during shuffling, while the mapping phase
depends more on application characteristics as more processing
tends to be done during that phase.

To combat these inefficiencies we developed a novel load
balancing algorithm to distribute work among cores according
to their connectivity in the network. Our algorithm takes
advantage of the fact that nodes with greater hop counts have
most if not all of their communication go through a single link
in the network, and assigns those nodes less work to avoid
congestion on the potentially bottlenecked link.

Our solution addresses the effects of hard faults with regards
to performance of MapReduce applications. Our algorithm
only applies to connected topologies. We do not consider
any irregular topologies that cause the network to become
disconnected.

Contributions. Specifically, we provide the following contri-
butions:

1) We propose a novel load balancing algorithm for irregular
network topologies.

2) By load balancing only the mapping phase, we achieved
over 5% improvement in execution time and over 30%
improvement in average latency for communication
bound workloads.

3) By load balancing only the reducing phase, we achieved
over 25% improvement in execution time for workloads
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with large number of unique key-value pairs.

II. RELATED WORK

The MapReduce programming model was originally in-
troduced by Google [4] to provide the efficient execution
of data-intensive applications on a cluster of commodity-
machines. Hadoop [17] is another cluster-based open-source
framework that implements the MapReduce framework. In
addition, MapReduce have been ported to different platforms
[6,9,12,16,21]

With the adoption of chip-multiprocessor (CMP) architec-
tures, several MapReduce implementations have been proposed
to target these systems [13,14,19,20]. In particular, Phoenix++
[19] is an optimized implementation of MapReduce for multi-
core systems. It provides a simple programming interface
for users, while internally managing the execution of the
MapReduce tasks. With the adoption of network on chip
interconnect, different works have been proposed to implement
MapReduce [5,7].

Irregular NoC topologies are created due to link failure. [11]
proposes an algorithm BLINC which allows to quickly perform
reconfiguration locally in-case of failures affecting few routers.
One approach for load balancing in irregular topology was used
by [15] wherein, they transform the network into a B+tree like
topology and balance the load on this new topology. Similar
techniques have also been studied where an irregular network is
mapped onto a regular topology since the underlying network
topology affects the load balancing [18].

[10] demonstrates the dynamic load balancing capabilities
of the Charm++ and [8] can be used to further improve
performance for tightly-coupled applications running in Grid
computing environments. However, they require knowledge
of the topology before-hand. [2] uses positional scan load-
balancing technique in a two-phase dynamic load-balancing
technique for ”Peer to Peer” computing systems but this is
well suited for regular topologies more in general.

III. MAPREDUCE BACKGROUND

MapReduce provides a simple programming model for data-
intensive applications. Users can develop parallel applications
by simply writing a map and a reduce function. Whereas,
the remaining aspects of parallel applications, including the
data scheduling and data exchange stages, are handled by the
particular implementation framework. In a typical framework,
the application’s input data is first partitioned and divided
among the cores in the system. Then, each core runs the
user-defined map function, which processes the input data
and produces a list of intermediate key-value pairs. Once the
mapping stage is complete, the intermediate data is sent over
the interconnect to the reducer cores, such that all key-value
pairs belonging to the same key are allocated to the same
reducer. Common MapReduce implementations typically uses
distributed hash table to store intermediate key-value pairs.
In the final stage, each core executes the user-defined reduce
function to aggregate key-value pairs received from all cores.
WordCount is a canonical example that illustrates the different
stages of MapReduce. The WordCount problem computes the

map(doc):

for each word w in doc

   emitKeyValue(w,1);

reduce(key,values):

result = 0;

for each v in values

   result += v;

emitFinal(key,result);

Fig. 1: The map and reduce functions for WordCount. The map
function emits a key-value pair for each word in the document. The
reduce function aggregates the word counts and emits the final result.

frequency of occurrence of each word in a document, and it is
utilized in many important applications, such as search engines
and social networks (e.g. indexing, identifying trending topics,
etc.). Figure 1 shows pseudo-code for the map and reduce
functions for WordCount. The map function parses the input
document based on the user-defined word delimiter. It emits
each word as key and 1 as a value, generating intermediate
key-value pairs. The reduce function, shown in the right part of
Figure 1, collects all key-value pairs from the different cores.
It then sums up the values for each word, generating a final
list of all unique words and the number of times they occurred
in the input document.

IV. IRREGULAR NOC TOPOLOGY

Continuing decrease in the feature size, technology scaling
down to the nanometer domain, lower power voltages, higher
operating frequencies of integrated circuits leads to increasing
susceptibility to transient, intermittent and/or permanent faults.
A fault is a defect in a system caused by any or all of the
below methods:

• process defects, taking the form of missing contact
windows, dust settlement, parasitic transistors, oxide
breakdown, electrostatic discharge (CDM, HBM) events,
etc.;

• aging effects, electro-migration, permanent antenna faults,
NBTI (negative bias temperature instability), etc;

• silicon defects, bulk defects (cracks, crystal imperfections),
surface impurities, etc; and

• intermittent effects caused by temperature variation, thresh-
old voltage instability; etc.

To explain further, permanent faults are caused by irreversible
changes in the chip. It can occur during the manufacturing
processes. It can also occur during the usage of the circuit, when
the circuit is old and starts to wear out. Once the permanent
fault occurs, those will remain in the chip for its entire lifetime
and the faulty results can be regenerated.

Intermittent faults occur occasionally in spurts. They repeat
themselves now and then and are not as continuous as
permanent errors. These faults can be caused by aging of the
hardware, threshold voltage instability, temperature variation
and such faults can lead to permanent faults too. These faults
are very hard to detect and occur in the presence of some
specific environmental condition or input.

The above two classes of faults are the very reason why we
introduce our project, problem and the solution of it. These two
types of faults can cause broken links in a design as shown in
figure 2. Figure 2 shows the irregular NoC topology with the
faulty mesh network that we are using in our experiments with
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Fig. 2: Irregular NoC Topology. Permanent link failure leads to
irregular topology. The figure shows an irregular topology where the
link between 6 and 7, 10 and 11, 9 and 13, 10 and 14, 11 and 15 are
broken. Because of this, node 11 and 15 become the least connected
nodes, followed by node 7, 13, and 14.

5 broken links called the Mesh 5Edge network. Because of
these faults, cores 15 and 11 have the least connection, which
are marked as red. Similarly, cores 14, 7 and 13 have lost
fewer links.

V. LOAD BALANCING ALGORITHM

Our load-balancing algorithm works by assigning nodes
with the highest average hop count, the least amount of work
and vice-versa. The intuition behind our algorithm is that a
broken link in the NoC creates a bottleneck by forcing nodes
to communicate through less optimal paths with higher hop
counts.Nodes with significantly higher average hop counts tend
to have most if not all of their communication go through a
single link in the network, creating a potential bottleneck in
the network that lead to congestion.
For instance in Figure 2 the link between nodes 8 and 12, link
(8, 12), is at high risk for congestion as all packets from nodes
12-15 must go through it. Compared to other nodes, nodes 12-
15 experience a larger increase in average hop count because
a greater percentage of their routing paths are reconfigured to
less optimal paths. Therefore, using average hop count as a
guide, our load-balancing algorithm indirectly reduces traffic
on bottle necked links by assigning nodes most affected by a
bottleneck link less work.
Below is the formula used to calculate the relative workload
each node is assigned where hops(i, j) is the minimum number
of hops to travel from node i to node j, and N is the number
of nodes in the network. The numerator calculates the average
number of hops between any two nodes in the network, or the
network average hop count, while the denominator calculates
the average number of hops from node X to any other node, or
node X’s average hop count. To get the exact percentage each
node receives, the relative workloads need to be normalized.

NodeXload ∝

∑N−1

i=0

∑N−1

j=i
dist(i,j)

(N2 )∑N−1

i=0
dist(X,i)

N−1

(1)

In Table 1 we show the average hop count and workload
distribution our algorithm computes for the topology in Figure
2. It can be seen that nodes 12-15 which lie on the bottlneck
link (8, 12) have high average hop counts and are assigned
smaller tasks than well connected nodes such as nodes 1 and
5.

Node Id Avg. Hop Count % Workload
0 3.20 7.02
1 3.07 7.33
2 3.33 6.74
3 4.00 5.62
4 2.93 7.66
5 2.80 8.02
6 3.07 7.32
7 4.80 4.69
8 3.07 7.32
9 2.93 7.66
10 3.20 7.02
11 5.73 3.92
12 3.60 6.24
13 4.27 5.27
14 5.07 4.43
15 6.00 3.74

TABLE I: Load Balancing A Average hop count and assigned
percentage of workload for each node in Figure 2. Workload size is
calculated using the equation 1.

VI. INEFFICIENCY IN MAPPING PHASE

MapReduce’s mapping phase begins with the scheduler
dividing the input data into map tasks. Instead of statically
assigning each worker an equal amount of data, the scheduler
creates many map tasks per worker. Workers are assigned map
tasks one at a time, and request new tasks from the scheduler
as they finish until all tasks are completed. A worker processes
a map task by reading a small chunk of data, computing
intermediate key value pairs, and then locally storing the
key value pair. Depending on the application, the amount
of processing per byte of data can cause mapping to be either
communication or computation bound. For example, during
mapping linear regression executes 3 multiplies and 5 writes
for every byte of input data, while histogram only executes 2
adds and 3 writes for every 3 bytes of data.

MapReduce’s current division and scheduling of map tasks
is optimized for computation heavy map phases. It attempts to
equalize the time spent processing data among the workers by
allowing fast workers to receive more tasks than slow workers.
For computation bound map tasks the latency of reading from
memory is negligible compared to the time spent computing
and there is less concern for network congestion as memory
reads are occurring at a lower frequency.

For communication bound mapping, the amount of pro-
cessing per byte of input data is relatively low. This makes
communication bound mapping more sensitive to the network
topology for two reasons. First, the rate at which memory reads
are generated is much higher. Therefore, relative to amount
of time computing, memory latency is a significant factor in
execution time, especially for more isolated nodes. Second,
input data is processed at a much higher rate, creating the risk
for congestion. In a chip multiprocessor, memory controllers
are distributed across all nodes. If the data a worker needs to
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read is not controlled by its local memory controller it makes
a remote memory request. The latency of a remote memory
requests depends on the network topology as requests must
traverse the network to reach their destination. An irregular
topology creates a greater risk for congestion as bottlenecked
links create a single common path for many memory requests.
Congestion slows down memory requests for all nodes in the
network creating a global problem.

Our proposed topology based load balancing algorithm would
assign each worker 1 map tasks whose size is determined by
the worker’s overall connectivity to the rest of the network.
Workers executing on nodes most affected by bottlenecked links
will be assigned a smaller chunk of data and make less memory
requests. This reduces the reduces the risk of congestion in
the network and allows for potential an decrease in execution
time over the baseline division of labor.

VII. INEFFICIENCY IN REDUCING PHASE

Each mapper produces key-value pairs in its local hash
table. A larger proportion of the hash table is resident in
the local cache of the corresponding mapper. During the
reduce phase of MapReduce, each reducer core pulls key-
value pairs from the hash table distributed across cores. In
the current implementation of Phoenix++, the hash table is
equally partitioned per each reducer, leading to a balanced
load in healthy network. However, in an irregular topology, the
connectivity of each cores is different. Some of the reducer
cores can be bottleneck. Different factors affect the amount
of effect an irregular topology creates, in the performance
of MapReduce applications. One of the factor is the number
of unique key-value pairs that a workload has. A workload
with large number of unique key-value pairs takes large
fraction of time in the reduce phase. If this workload has
high communication to computation ratio, then the irregular
topology can cause a significant degradation in the performance.

Our load balancing algorithm, in the reducing phase, divides
the hash table containing the intermediate key-value pairs
according to the connectivity of cores. A core’s connectivity
is determined by the average hop count of itself and the rest
of the cores in the system. Each core with higher connectivity,
takes larger portion of the hash table. We generate a ratio value
per core using an algorithm that factors the connectivity of
cores. Each core uses its ratio to determine the range of the
hash table to read during reducing phase. A less connected
node reads small range of hash table entry. A highly connected
node reads large range of the hash table. The overall effect is
that, when the latency of the core reading from other cores
is considered a less connected node is less likely to become
a bottleneck. Ideally, the ratio would allow all the cores to
finish at the same time. However, the connectivity based on
the average hop count of a core based on others is linearly
related with the number of cycles taken by the core to complete
execution. There are other factors affecting the ratio. For a
communication dominant workload, the ratio should be highly
dispersed. For a computation dominant workload, the ratio
should have less variance across cores. In the latter case, if the
ratio is highly dispersed, as the execution time does not depend

on the network latency, then the cores can have unproportional
amount of work. Each core that are highly connected and as a
result got larger range of the hash table, can take significantly
larger amount of time than the low connected cores that are
assigned with a lower range of hash table. Consequently, the
execution time can get worse than the baseline.

VIII. EXPERIMENTAL EVALUATION

We performed our experimental evaluation using Gem5
[3]/Garnet [1], cycle accurate, integrated core and network
simulator. Gem5 models the individual core, whereas Garnet
models the network level characteristics. We modeled a 16-
node CMP, which allows us to evaluate our data-intensive
applications in reasonable time. The results shown in the
following section were based on experiment performed on the
irregular topology shown in Figure 2. However, our proposed
load balancing algorithm is not restricted to any kind of network
topology.

We first ran several workloads from Phoenix++ without
any modification on our simulation infrastructure. We collect
core-level information such as number of cycles and network-
level information such as average latency and link utilization.
We performed two kinds of load balancing by implementing
our algorithm on both the mapping and reducing phases. We
modified the task splitting function for each workload in
Phoenix++. In addition, we modified the reducing phase for
each workload in Phoenix++. We measured the execution time
and other network parameters and compared in isolation, these
values with our baseline. We discussed our experimental results
in the following section. Table II summarizes the Gem5 and
Garnet configurations we used for our simulations.

Gem5 configuration Garnet configuration
clock frequency = 1GHz topology = 4*4 mesh
L1 D and I cache size = 16KB number of input buffers = 2
L1 D and I cache lat. = 16KB number of vcs = 2
L2 cache size = 128KB routing algorithm = minimal
L2 cache latency = 12ns
Protocol = MESI Two Level

TABLE II: Experimental setup. We performed cycle-accurate core
and network simulations on Gem5 and Garnet, simulations, respec-
tively. We run the modified Phoenix++ workloads on these simulation
platforms and got core and network level information.

The workloads we investigate, listed in Table III, are based on
the Phoenix++ framework: wc, hist, and lr are the WordCount,
Histogram, and Linear Regression workloads, respectively. For
hist, we used a smaller version (5MB) of the data sets provided
with Phoenix++. For wc, to evaluate the mapping phase, we
used a smaller version of data sets (1MB) provided with
Phoenix++. For evaluating the reducing phase, we used a
data sets that contain unique words to stress test the all to
all exchange of key-value pairs during this phase. For lr, we
used randomly generated data sets. The size of the data sets
was kept 5MB. The size of our data sets were smaller than
those provided by Phoenix++, because simulation time was
unreasonably high for those provided by Phoenix++.

A. Performance Evaluation - Mapping Phase
Figure 3 shows the execution time of different workloads for

the baseline and our load balanced solution. hist achieved over
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name description # of
keys

hist finds the histogram of RGB values in an image. 768
lr performs linear regression. 5
wc counts the frequency of words in a document. varies

TABLE III: Phoenix++ workloads. We selected these workloads
because they represent a wide range of data-intensive applications.
hist is commonly used for image analysis; lr in artificial intelligence;
and wc in search engine and document processing. The number of
unique keys for wc depends on the number of unique words in the
inputs.
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Fig. 3: Mapping phase - execution time. We achieved over 5%
improvement in execution time for hist. lr shows higher execution
time over the baseline, because it is computation bound

5% improvement in execution time, where as the execution time
for wc remain the same. The execution time lr get higher in our
load balanced solution. hist benefits in terms of execution time
because it has the highest communication to computation ratio.
The application, hist reads a pixel and generate intermediate
key-value pairs without additional operations. wc has a smaller
communication to computation ratio as compared with hist. wc
performs a couple of comparison per each character read from
memory. Because of this, our load balanced algorithm fails
to achieve improvement in execution time for wc workload.
lr has the smallest communication to computation ratio. In
our lr data set, each data point is a single byte. Per each byte
read, lr compute 3 multiplications and generate 5 key-value
pairs. This makes lr computation bound. Since it is computation
bound, our load balancing algorithm gave more work for highly
connected cores and make these cores to finish much latter
than the baseline. The connectivity of nodes doesn’t matter for
lr workloads. Users can turn off our load balancing solutions
for compute bound applications.

Figure 4 shows the average latency of different workloads
for the baseline and our load balanced solution. Average
latency includes both network latency and queuing latency. hist
achieved over 30% improvement in average latency and wc
achieved over 7%. The average latency for lr increased by over
159%. As explained before, we found that lr is computation
bound and does not benefit from load balancing.

Figure 5 shows the average link utilization of different
workloads for the baseline and our load balanced solution. The
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Fig. 4: Mapping phase - average latency. We achieved over 30%
improvement in average latency for hist and over 7% for hist. lr
shows higher average latency over the baseline, because it has a high
communication to computation ratio.
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Fig. 5: Mapping phase - link utilization. We achieved over 70%
improvement in average link utilization for hist and over 6% for hist.
lr shows higher average link utilization over the baseline, because it
is computation bound.

average link utilization measures the average number of flits
that are present in a network link per cycle. hist achieved over
70% improvement in average link utilization and wc achieved
over 6%. The average link utilization for lr increased by over
30%. As explained before, we found that lr is computation
bound and doesn’t benefit from load balancing.

B. Performance Evaluation - Reducing Phase

Figure 6 shows the execution time, the average latency and
the average link utilization for wc workload. The values are
shown for the baseline and our load balanced solution. Since wc
has large number of unique keys, we were able to achieve over
25% improvement in execution time by only load balancing
the reducing phase.

Figure 7 shows the execution time, the average latency and
the average link utilization for hist workload. The values are
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Fig. 6: Reducing phase - wc evaluation.
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Fig. 7: Reducing phase - hist evaluation.

shown for the baseline and our load balanced solution. Since
hist has small number of unique keys (768), we achieved 10%
improvement in execution time, smaller than that of wc.

IX. CONCLUSIONS

We proposed an algorithm capable of load balancing data-
intensive applications in a fault induced irregular NoC inter-
connect. We found experimentally that, for communication
dominant applications, our load balancing algorithms improve
execution time by more than 5% and average latency by
more than 20%, during the mapping phase. During the
reducing phase, we improve execution time by more than
25%, for applications with a high number of unique key-value
pairs. We basis our load balancing algorithm on a heuristic
function that utilized the average hop count to determine the
connectivity of each core. Finding the exact mathematical
model, which considers the characteristics of applications
including computation to communication ratio is an important
area of future work.
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