
Error-Tolerant Image Processing Application Based On Stochastic Logic

Checkpoint1 Report

Team Silicon

 Problem to be addressed

Aggressive scaling of semiconductor devices exacerbate issues of reliability. High density of devices

leads to more probable occurrences of hard errors during manufacturing. In addition, soft errors

including particles striking and ray radiation will also have a larger impact on the high-density chips

compared to the chips less progressive scaling and lower densities. A particle striking on the chip,

for example, can cause a bit flip. Therefore, it is important to develop a method to enhance the

reliability of the system.

 Why does this problem matter?

The modern techniques that we adapt now are limited in ensuring absolute reliability. An error-

tolerant system is in urgent need to eliminate various external factors that can cause errors. A single

transient fault may cause the whole system to perform erroneously. Unreliability in systems can lead

to huge loss in all fields, including economic loss of company as well as potential hazards in real-

world applications.

 Idea/solution to be investigated by the project

Our idea is to use stochastic logics to implement image processing hardware such as

sharpening/smoothing filters and make it more error-tolerant for transient faults.

Stochastic logic is error-tolerant due to its nature and can create analog signal states in digital-based

systems. In stochastic logic, a normal input will take advantage of randomness and be transformed to

a bit stream. The bit streams or wire bundles are digital, carrying zeros and ones, and the signal is

conveyed through the statistical distribution of the logical values.

The advantages of the stochastic logic are:

1. Error tolerance. A single binary value is presented with bit stream which reduces the impact

when transient fault happens. In normal operations, if the significant bit of one value is

corrupted, it is likely to have a large impact on the result. However, in the stochastic logics,

the impact is minimized by equally distributing value weight to all bits in the bit stream.

2. Fast computation in specific applications. While the stochastic creates more bits than

traditional logics, in some cases it will be faster by taking advantage of statistic concept. For

example in Figure 1, the multiplication 𝑦 = 𝑥1 ⋅ 𝑥2 in directly computed by using a simple

AND gate. Another example is scaled addition shown in Figure 2. Using a single MUX, the

stochastic logic can perform a weighted average easily.

 Figure 1. Multiplication in Stochastic Logic

Figure 2. Scaled Addition

 Progress so far

1. Basic stochastic logic units

a. Completed design of basic stochastic logic units, including Randomizer (LFSR,

Comparator) and De-Randomizer.

b. Adapted basic units to create a multiplier in stochastic logic. It takes advantage of the fact

that the multiplication of two independent probabilities can be calculated directly as 𝑝 =
𝑝1 ⋅ 𝑝2 using the AND gate. After testing, the module achieved desired functionality.

2. Custom baseline smoothing and sharpening filter
 We implemented the low-pass (smoothing) filter using image blur algorithm to

smoothen the image and mitigate noise. The design is reconfigurable and the high-pass

(sharpening) filter can be easily achieved by adjusting parameters of the image

processing masks. An example has been attached below in Figure 4.

 Issues
1. Not clear about detailed implementation of addition/subtraction in stochastic logic

2. Not sure about how to optimize area delay product in stochastic filter

 Future works
In the next few weeks, we will be focusing on the design of the sharpening/smoothing filter in the

stochastic logic. Also, we will be developing the control units to interface the stochastic units for

testing purposes.

De-
Randomizer

Randomizer

LFSR

Comparator

&0

0

0

Random Sequence

Custom Data In

Stochastic
Computing Unit

Custom Output

Stochastic

Multiplier

Figure 3. Stochastic Multiplier Architecture

Figure 4. Smoothing and Sharpening Results with Custom Baseline filter

(a) Original (b) Smoothing (b) Sharpening

