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 Problem to be addressed 

Aggressive scaling of semiconductor devices exacerbates issues of reliability. High density of 

devices leads to more probable occurrences of hard errors during manufacture. In addition, soft 

errors including particle striking and ray radiation will also have a larger impact on high-density 

chips compared to chips with less progressive scaling and lower device densities. A particle striking 

on the chip, for example, can cause a bit flip. Therefore, it is important to develop a method to 

enhance the reliability of the system.  

 

 Why does this problem matter? 

The modern techniques that we adapt now are limited in ensuring absolute reliability. An 

error-tolerant system is in urgent need to eliminate various external causes of errors. A single 

transient fault could cause the whole system to perform erroneously. Unreliability in systems can 

lead to huge losses in all fields, including economic loss of company as well as potential hazards in 

real-world applications. 

 

 Idea/solution to be investigated by the project 

Our idea is to use stochastic logics to implement image processing hardware such as 

sharpening/smoothing filters and make it more error-tolerant against transient faults.  

 

Stochastic logic has the nature of error-tolerance and can create analog signal states in digital-based 

systems. In stochastic logic, a normal input will take advantage of randomness and be transformed to 

a bit stream. The bit streams or wire bundles are digital, carrying zeros and ones, and the signal is 

conveyed through the statistical distribution of logical values. 

 

Advantages of the stochastic logic: 

1. Error tolerance. A single binary value is presented with bit stream which reduces the impact 

of a single transient fault. In normal operations, if the significant bit of one value is 

corrupted, it is likely to have a large impact on the result. However, in the stochastic logics, 

the impact is minimized by equally distributing value weight to all bits in the bit stream. 

2. Fast computation in specific applications. While the stochastic creates more bits than 

traditional logics, in some cases it will be faster by taking advantage of statistic concept. For 

example in Figure 1, the multiplication 𝑦 =  𝑥1 ⋅ 𝑥2 in directly computed by using a simple 

AND gate. Another example is scaled addition shown in Figure 2. Using a single MUX, the 

stochastic logic can perform a weighted average easily. 

 

                Figure 1. Multiplication in Stochastic Logic      Figure 2. Scaled Addition 



 Progress so far 

1. We finished the design of Sharpening/Smoothing filter. The stochastic filter design itself is trial in 

the system. It involves only MUX’s (8 to 1 and 2 to 1) to calculate scaled addition/subtraction. 
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Figure 3. Stochastic Logic Architecture 

Figure 5. Smoothing and Sharpening Results with Custom Baseline filter 

(a) Original (b) Smoothing (c) Sharpening 

Figure 4. Smoothing and Sharpening Results with Stochastic filter 

 

(a) Original (b) Smoothing (c) Sharpening 



2. Evaluate clock period/synthesis area 

We evaluated speed/area of the two designs. Based on the comparison in Table 1, the clock 

period and area of stochastic design are both smaller than baseline design. However, the 

stochastic design will need more cycles to execute (28 in our case). After further 

optimization, we managed to keep the Period∗Area∗#Cycle roughly the same for baseline 

design and stochastic design (if only count the core module). 
 

Table 1. Comparison of Synthesis Results 

 Baseline Stochastic Stochastic (core only) 

Clock Period (ns) 7.8 1.8 1.8 

Synthesis Area (𝜇𝑚2) 49687 26796 1063 

Total Cycle N 𝑁 ⋅ 28 𝑁 ⋅ 28 

Period∗Area∗#Cycle 387559N 12347596N 489830N 
 

 

 Future works 
1. Error-tolerant testing 

 We plan to inject errors manually and observe the resulting pictures. To compare the erroneous 

pictures with original picture, we need a method to evaluate the difference between the 

pictures. We plan to use SSIM and PSNR metrics for evaluation. 

 The PSNR block computes the peak signal-to-noise ratio, in decibels, between two images. 

The higher the PSNR, the better the quality of the compressed, or reconstructed image. A 

PSNR of 50-70dB is considered a good image.  

 The Structural SIMilarity (SSIM) index is a method for measuring the similarity between two 

images. The SSIM index can be viewed as a quality measure of one of the images being 

compared, provided the other image is regarded as of ideal quality. An SSIM index of 1 

implies the two images are equal and any value from 0.7 to 1 is considered a good quality 

image. 

2. Result Analysis 

 

 Issues 
1. Do we need to compare image similarity processed by Stochastic/baseline design? These two 

approaches have similar algorithms but differences will occur due to errors such as quantization 

error. 

2. In the error-tolerant test, do we just randomly flip pixel bits or do we have to create some certain 

noise such as Salt-and-pepper noise? 

 

 
 Figure 6. An Image With Salt-and-pepper Noise 


