
Error-Tolerant Image Processing Application Based On Stochastic Logic

Checkpoint 3 Report

Team Silicon

 Problem to be addressed

Aggressive scaling of semiconductor devices exacerbates issues of reliability. High density of

devices leads to more probable occurrences of hard errors during manufacturing. In addition, soft

errors including particles striking and ray radiation will also have a larger impact on the high-density

chips compared to the chips less progressive scaling and lower densities. A particle striking on the

chip, for example, can cause a bit flip. Therefore, it is important to develop a method to enhance the

reliability of the system.

 Why does this problem matter?

The modern techniques that we adapt now are limited in ensuring absolute reliability. An error-

tolerant system is in urgent need to eliminate various external factors that can cause errors. A single

transient fault may cause the whole system to perform erroneously. Unreliability in systems can lead

to huge loss in all fields, including economic loss of company as well as potential hazards in real-

world applications.

 Idea/solution to be investigated by the project

Our idea is to use stochastic logics to implement image processing hardware such as

sharpening/smoothing filters and make it more error-tolerant for transient faults.

Stochastic logic is error-tolerant due to its nature and can create analog signal states in digital-based

systems. In stochastic logic, a normal input will take advantage of randomness and be transformed to

a bit stream. The bit streams or wire bundles are digital, carrying zeros and ones, and the signal is

conveyed through the statistical distribution of the logical values.

The advantages of the stochastic logic are:

1. Error tolerance. A single binary value is presented with bit stream which reduces the impact

when transient fault happens. In normal operations, if the significant bit of one value is

corrupted, it is likely to have a large impact on the result. However, in the stochastic logics,

the impact is minimized by equally distributing value weight to all bits in the bit stream.

2. Fast computation in specific applications. While the stochastic creates more bits than

traditional logics, in some cases it will be faster by taking advantage of statistic concept. For

example in Figure 1, the multiplication 𝑦 = 𝑥1 ⋅ 𝑥2 in directly computed by using a simple

AND gate. Another example is scaled addition shown in Figure 2. Using a single MUX, the

stochastic logic can perform a weighted average easily.

 Figure 1. Multiplication in Stochastic Logic

Figure 2. Scaled Addition

 Progress so far

1. Error-Tolerant

a. Inject Transient Errors

To test the error-tolerant capability of stochastic logic, we randomly flipped the input of

the filter at some error rate to see the behavior. The results are shown below. The

stochastic filter suffers less from the increasing of the errors visually.

Figure 3. Raw Example Picture

Baseline: (a) 0% (b) 1% (c) 5% (d) 10%
(e) 15%

Stochastic: (a) 0% (b) 1% (c) 5% (d) 10% (e)
15% Figure 4. Error-Injection Results with Low-Pass filter

b. Evaluation methodology

To evaluate the results quantitatively, we use SSIM and PSNR metrics to check the

similarity between reference picture and the one with errors injected.

 The Structural SIMilarity (SSIM) index is a method for measuring the similarity

between two images. The SSIM index can be viewed as a quality measure for one of

the images being compared, provided the other image is regarded as of perfect

quality.

 The PSNR block computes the peak signal-to-noise ratio, in decibels, between two

images. The higher the PSNR, the better the quality of the compressed, or

reconstructed image.

A few observations:

 The stochastic filter outperforms the baseline filter in every error injection rate in

terms of the error-tolerance.

 The high-pass filter is more prone to faults. This is because the low-pass filter will

smooth the picture and tolerant errors to some extents by its nature while the high-

pass filter will actually amplify the faults.

Low-Pass

Filter

SSIM PSNR (dB)

Baseline Stochastic Baseline Stochastic

1% 0.826 0.9614 31.558 36.4829
5% 0.552 0.8860 22.819 25.7218
10% 0.421 0.8088 18.255 20.0282
15% 0.358 0.7520 15.744 17.0239

Figure 5. Error-Injection Results with High-Pass filter

Table 1: Comparison of SSIM and PSNR for Low-Pass Filter

Baseline: (a) 0% (b) 1% (c) 5% (d) 10%
(e) 15%

Stochastic: (a) 0% (b) 1% (c) 5% (d) 10% (e)
15%

High-Pass

Filter

SSIM PSNR (dB)

Baseline Stochastic Baseline Stochastic

1% 0.470 0.5473 4.334 6.3432
5% 0.231 0.3042 -3.160 -0.3760
10% 0.142 0.2184 -5.904 -2.7470
15% 0.099 0.1788 -6.834 -3.5915

2. SSIM and PSNR Comparison between Baseline and Stochastic

We want to compare the similarity between baseline and stochastic filter implementations. We

can see the baseline and stochastic low-pass filter is almost the same while there exists some

difference in high-pass filter (though not visually identifiable). This is because the high-pass

filter amplifies the quantization errors between these two algorithms.

 SSIM PSNR

Low-Pass 0.9925 45.6314
High-Pass 0.6886 10.3558

Table 2: Comparison of SSIM and PSNR for High-Pass Filter

Figure 6. Low-Pass SSIM Comparison Figure 7. High-Pass SSIM Comparison

Figure 9. High-Pass PSNR Comparison Figure 8. Low-Pass PSNR Comparison

Table 3: Comparison of SSIM and PSNR for Baseline and Stochastic Filters

3. Clock Period/Synthesized Area

We evaluated speed/area of two designs. We can see from Table 1, the clock period and

area of stochastic design are both smaller than baseline design. However, the stochastic

design will need more cycles to execute (28 in our case). After some optimization, we

managed to keep the Period∗Area∗#Cycle roughly the same for baseline design and

stochastic design (if only count the core module).
Table 4. Comparison of Synthesis Results

 Baseline Stochastic Stochastic (core only)

Clock Period (ns) 7.8 1.8 1.8

Synthesis Area (𝜇𝑚2) 49,687 26,796 1,063

Total Cycle N 𝑁 ⋅ 28 𝑁 ⋅ 28

Period∗Area∗#Cycle 387,559N 12,347,596N 489, 830N

4. Conclusion

The stochastic logic filter can operate at a faster clock frequency and consume less silicon area.

While it will take more cycle numbers than baseline filter to execute, stochastic logic takes

advantage of randomness to make the filter errors tolerant and more reliable.

 Future works
1. Poster

2. Report

 Issues
1. Pictures

a. Do we need to show the results of different pictures? Will that be too redundant and

unnecessary?

b. What is the best style to present our SSIM/PSNR results? (figure 6,7,8,9)

c. Do we need to keep the data range of the PSNR results the same? The negative value

makes the graph a little bit weird. (figure 8,9)

2. What should we include in the poster?

