

Fall 2015 EECS 578 Correct Operation for Processors and Embedded Systems

Introduction & Motivation

- An error-tolerant system is in urgent need to eliminate various external factors that can cause errors in modern techniques. A single transient fault may cause the whole system to perform erroneously. Unreliability in systems can lead to huge loss.
- Stochastic logic can create analog signal states in digital-based systems. It can be regarded as "bit-level" redundancy in some sense.
- \blacktriangleright Stochastic arithmetic can be adapted to computing such as image processing due to a number of features
 - + Tolerant transient fault
 - + Simple hardware in some computing
 - + Low silicon area and faster clock period
 - + progressive precision
 - More clock cycles to compute

Performance and Area

- We synthesized and evaluated speed/area of conventional and stochastic designs. The clock period and area of stochastic design are both smaller than baseline design.
- \blacktriangleright The stochastic logic itself is only a small portion of the area. The most area is used to covert between regular number and stochastic number.
- \blacktriangleright The stochastic design will need more cycles to execute.
- The *Period* * *Area* * #*Cycle* is roughly the same magnitude for baseline and stochastic design (if we only consider the core module).

	Baseline	Stochastic Low-Pass	Stochastic (core only) Low-Pass	Stochastic High-Pass	Stochastic (core only) High-Pass
Clock Period (ns)	7.8	1.8	1.8	1.8	1.8
Synthesis Area (μm^2)	49,687	26,796	1,063	31,222	1,461
Total Cycle	Ν	$N \cdot 2^8$	$N\cdot 2^8$	$N \cdot 2^8$	$N \cdot 2^8$
Period*Area* #Cycle	387,559N	12,347,596N	489, 830N	14,387,097N	673,228N

Error-Tolerant Image Processing Application Based on Stochastic Logic Yulin Shi, Yilei Xu, Yunkai Zhao, Yue Zheng

Error Tolerance

 \blacktriangleright We randomly flipped the input of the filters at different error rates to see the behavior.

We use SSIM (Structural SIMilarity) and PSNR(the peak signal-tonoise ratio) to measure the similarity of pictures quantitatively.

 \blacktriangleright Data shown below is the average results of ten different pictures.

L	SSIM			PSNR (dB)					
	Baseline	Stochastic	Difference	Baseline	Stochastic	Difference			
High-Pass Filter									
1%	0.407	0.447	9.83%	0.945	4.046	3.101			
5%	0.174	0.205	17.82%	-5.504	-3.728	1.776			
10%	0.106	0.146	37.74%	-7.859	-6.245	1.614			
15%	0.076	0.118	55.26%	-8.854	-7.476	1.378			
Low-Pass Filter									
1%	0.794	0.926	16.62%	25.732	33.273	7.541			
5%	0.497	0.781	57.14%	17.482	21.497	4.015			
10%	0.368	0.686	86.41%	13.310	15.871	2.561			
15%	0.308	0.621	101.62%	10.960	12.894	1.934			

grayscale

Discussion

 \blacktriangleright The high-pass filter is more prone to faults • Low-pass filter will smooth the picture and tolerant errors to some extents ➢ Progressive precision • Partial bit-stream provide a good estimate of the exact value

Possible random number resource to reduce hardware cost

- \blacktriangleright The stochastic logic filter can be adapted to image processing filters to simplify the hardware design.
- F It consumes less silicon area and can operate at a faster clock While it will take more cycle numbers than conventional filter to execute, stochastic logic takes advantage of randomness and outperforms the baseline filter in terms of the error-tolerance capability.

Acknowledgement

We thank Professor Bertacco and Dr. Doowon Lee for providing guidance and assistance in our project. This project refers to the Dr Weikang Qian's work in the field of image processing implemented with stochastic logic and the slides from course EECS 478, taught by Professor John P. Hayes.

