
Error-Tolerant Image Processing Application Based

on Stochastic Logic

Yulin Shi, Yilei Xu, Yunkai Zhao and Yue Zheng

Department of Electrical Engineering and Computer Science, University of Michigan

{yulins, yileixu, zyk, yuezheng} @ umich.edu

Abstract—Aggressive scaling of semiconductor devices

exacerbates issues of reliability. Stochastic logic, which operates

on probabilistic signals, takes advantage of randomness resulting

in a more reliable system with simple hardware. In this paper, we

present our stochastic design of low-pass (smoothing) and high-

pass (sharpening) filters. We modeled our design in Verilog and

synthesized the design. The synthesis results show that stochastic

logic can have operate at a faster clock frequency and consume less

silicon area in specific applications compared to the conventional

implementation. In addition, the stochastic implementations are

much more tolerant of soft errors.

Keywords—Stochastic Logic; Error-Tolerant Computation;

Image Processing; Low-pass Filter; High-pass Filter

I. INTRODUCTION

High density of devices leads to more probable occurrences
of errors in computer system. Transient faults, also known as
soft errors, present a serious challenge to the correct operation
of modern processors [2]. Soft errors including particles striking
and ray radiation will have a larger impact on the high-density
chips compared to the chips less progressive scaling and lower
densities. A particle striking on the chip can cause a bit flip and
break the entire application. Therefore, it is important to develop
a method to enhance the reliability of the system. Our idea is to
use stochastic logics to implement image processing hardware
such as high-pass (sharpening) and low-pass (smoothing) filters
and make it error-tolerant to transient faults.

A. Stochastic Logic

Stochastic logic operates numerical computations with
corresponding probabilities [7]. The numerical values will be
converted to binary value (probability) first, which is a sequence
of random bit stream, as the input for stochastic logic. After
computations, new binary values generated are de-randomized
back to numerical values. It is a promising technique having a

number of applications, especially in data intensive application
[7]. In recent years, with the nature of stochastic logic, it has
been successfully applied into image processing [1].

Stochastic number (SN) is an N-bit stream with 𝑁1 1s and
𝑁 – 𝑁1 0s and the value, which can also be called probability,
is 𝑃 = 𝑁1/𝑁 [1]. The SN value is defined in the interval [0, 1].
For example, 101000 and 100011 are represented as 2/6 and 3/6,
respectively.

SN can be either unipolar or bipolar. If only the positive
numbers are represented in SN value, which is 𝑃 = 𝑁1/𝑁, it is
called unipolar SN value. If both positive numbers and negative
numbers are represented in SN value, which is 2𝑃 − 1 (interval
[−1,1]), it is called bipolar SN value [3].

Stochastic logic takes more cycle number than conventional
one. It needs 2𝑛 cycles to process a 𝑛 bit number with same
precision, which can be a huge performance overhead in
ordinary computation.

However, stochastic logic performs fast computation in
specific applications with low area and faster clock. While the
stochastic creates more bits than traditional logics, in some cases
it will be faster by taking advantage of statistics concept. For
example, in Fig. 1a, the multiplication 𝑦 = 𝑥1 ⋅ 𝑥2 is directly
computed by using a simple AND gate. Another example is
scaled addition shown in Fig. 1b. Using a single MUX, the
stochastic logic can perform a weighted average easily.

B. Error Tolerance

Stochastic logic is error-tolerant due to its nature and can
create analog signal states in digital-based systems. In stochastic
logic, a normal input will take advantage of randomness and be
transformed to a bit stream. The bit streams or wire bundles are
digital, carrying zeros and ones, and the signal is conveyed
through the statistical distribution of the logical values.

A single binary value is presented with bit stream which
reduces the impact when transient fault happens. In normal
operations, if the significant bit of one value is corrupted, it is
likely to have a large impact on the result. However, in the
stochastic logics, the impact is minimized by equally
distributing value weight to all bits in the bit stream.

Fig 1. Examples of Simple Stochastic Logic

2/6

0,0,0,0,1,0
0,1,0,1,1,0

1,0,0,0,1,0

3/6 1/6

AND

MUX

0

1

(a) (b)

C. Filter

Low pass filter, also called “smoothing” filter, is to remove
high frequency components from pictures. High frequency in
pixels indicates sharp transitions between pixels. With the low
pass filter, image is smoothened by averaging adjacent pixels.
Fig. 2b gives an example image of low-pass processing.

High pass filter, also known as “sharpening” filter, is
opposite to low-pass filter. It is used to make a picture sharper
by enhancing high frequency signals. Fig. 2c gives an example
image high-pass processing.

 Image filters are implemented using neighborhood
operations, which will modify the pixel value depending on the
selected pixel and its neighboring pixels [4] [9]. Fig. 3 shows the
basic low pass filter mask and high pass filter mask.

D. Overview

In this paper, we used stochastic logics to implement image
processing hardware such as sharpening and smoothing filters
and make it more error-tolerant to transient faults. To evaluate
our results, we also implemented a baseline for comparison in
terms of hardware cost, performance and error-tolerance
capability.

The remaining of this paper is organized as follows. Section
2 introduces the architecture of stochastic design. In Section 3
and 4, we describes our implementation and presents
experimental results. A discussion is given in section 5 and
followed by related work in Section 6. Finally, a conclusion is
presented in section 7.

II. THE STOCHASTIC ARCHITECTURE

We present an architecture based on the ReSC architecture
in [7]. As illustrated in Fig. 4, the stochastic logic is composed
of three parts: the Randomizer Unit generating stochastic bit
streams, the Stochastic Filter processing these bit streams, and
the De-Randomizer Unit converting the resulting bit stream to
binary output values.

A. The Stochastic Filter

The Stochastic Filter is the kernel of the architecture. As
described in Section I.B, we can use a MUX to perform a
weighted average easily. As mentioned in Section I.C,
smoothening filter and sharpening filter have different
parameters. We have different logic designs for these two filters.

The sharpening filter is shown in Fig. 5. It needs bipolar
system to support the subtraction. The probability 𝑥 of the
independent stochastic bit stream 𝑥𝑖 is controlled by the
Randomizer Unit. We control 𝑥 to get corresponding filter
parameters. The logic of sharpening filter is shown in (1).

 𝑅𝑒𝑠𝑢𝑙𝑡 = −
1

2
(

1

8
(𝑧0 + ⋯ 𝑧3 + 𝑧5 + ⋯ + 𝑧7)) +

1

2
𝑧4 

Smoothing filter has similar logic. To simplify the logic, we
only take eight pixels into calculation, so we only use the first
mux in Fig. 5. Equation (2) is the smoothening filter logic. It
works in both unipolar and bipolar system.

 𝑅𝑒𝑠𝑢𝑙𝑡 =
1

8
(𝑧0 + ⋯ + 𝑧7) 

X1
X2
X3

Z0

Z1

Z2

Z3

Z5

Z6

Z7

Z8

0

1

2

3

4

5

6

7

MUX

Z4

0

1
MUX

X4

Result

Fig 5. Stochastic Filter Design

(a) Original (b) Low-Pass (c) High-Pass

Fig 2. Example Images after Filter Processing

De-
Randomizer

Randomizer

LFSR

Comparator

Stochastic
Filter

Picture Interface
(MATLAB)

Data
Sharpening

Smoothing

Data Out

Random Sequence

 Fig 4. Stochastic Architecture

-1 -1 -1

-1 8 -1

-1 -1 -1

Fig 3b: High Pass Mask

1 1 1

1 1 1

1 1 1

Fig 3a: Low Pass Mask

B. The Randomizer Unit

The Randomizer Unit is a comparator between random
number register and constant number register. We use LFSR
(Linear Feedback Shift Register) to generate random number
and compare it with a constant number in each clock cycle. If
the random number is less than the constant number, then the
comparator generates a one; otherwise, it generates a zero.

To generate random bit streams for 8-bit pixels, we have 9-
bit LFSR, so that the pseudo-random numbers’ period is 29 −
1 = 511, which is longer than the length of input random bit
streams, 256. In addition, to make sure every bit of the random
sequence in the stochastic logic is decoupled and independent of
each other, every randomizer is configured to have different
initial states.

C. The De-Randomizer Unit

The De-randomizer Unit translates the result of stochastic
filter back to an 8-bit pixel value using a counter. It is essentially
a counter design which counts all ones in the stochastic bit
stream in 28 cycles. Since each bit of the stream has probability
𝑥 of being digital value one, the mean value of the counter is

𝑥 ⋅ 28, which is the expected value represented by the bit stream
[7].

III. IMPEMENTATION

The top-level block diagram of the system is illustrated in
Fig. 4. We use MATLAB to pre-process images into 2-
dimentional arrays and store them into a text file as inputs of
stochastic architecture. After the simulation of stochastic logic,
we store output data as a 2-dimentional array using testbench
and display picture from array with MATLAB.

We implemented both filters (high-pass and low-pass) in
Verilog with both conventional and stochastic implementation
to monitor the behavior difference. To evaluate our results, we
also implemented a baseline for comparison. The baseline filters
were implemented in conventional way. The formulas (1) and
(2) were directly implemented by multiplications and divisions.

To analyze the results, we use embedded functions in
MATLAB to calculate SSIM and PSNR values. More details
will be covered in the next section.

 Baseline Implementation (High-Pass)

 Stochastic Implementation (High-Pass)

 Baseline Implementation (Low-Pass)

 Stochastic Implementation (Low-Pass)

(a) (b) (c) (d) (e)

Fig 6. Fault tolerance for the high-pass (sharpening) and low-pass (smoothing) filters. The images in the top and

third rows are generated by a (baseline) conventional implementation. The images in the second and bottom rows

are generated by our stochastic logic implementation. Transient errors are injected at a rate of (a) 0%; (b) 1%; (c)

5%; (d) 10%; (e) 15%.

Original Image

IV. EXPERIMENTAL RESULTS

A. Methodology

In this section, we present experimental results comparing
conventional and stochastic implementations of low-pass and
high-pass filter. We have implemented the hardware modules in
Verilog and synthesized it using EECS470 Library to determine
the clock period and silicon area. We used MATLAB as the
interface to process the simulation outputs. The images we used
in testing were all 8-bit grayscale pictures.

To test the error-tolerant capability of stochastic logic, we
randomly flipped the input of the filter at some error rate to see
the behavior. SSIM (Structural SIMilarity) and PSNR(the peak
signal-to-noise ratio) are used to analyze the similarity of
pictures quantitatively.

B. SSIM & PSNR

We used two well-known objective image quality metrics,
the peak-signal-to-noise ratio (PSNR) as well as the structural
similarity index (SSIM) to measure the image quality. PSNR is
the ratio between the reference signal and the distortion signal
in an image, given in decibels. The higher the PSNR, the closer
the distorted image is to the original. In most cases, a higher
PSNR value correlate to a higher quality image. PSNR is a
popular quality metric because it is easy and fast to calculate
while giving reasonable results. SSIM is based on the idea that
the human visual system is highly adapted to process structural
information, and the algorithm attempts to measure the change
in this information between the reference and the distorted

image. The value of SSIM is between -1 and 1, and value 1 is
only reachable in the case of two identical images [5] [11].

C. Error-tolerant

The errors introduced were of 1%, 5%, 10% and 15% ranges
to help analyze the relative behavior of both versions of the
implemented hardware. The resulting pictures are shown in Fig.
6. The 0% rate means the filter output of no error-injection case.
Visually, we can see that the stochastic filter suffers less from
the increasing of the errors.

We tested ten different pictures at different error-injection
levels and averaged the results, which were summarized in
Table I. The Sto column indicates the results with stochastic
implementation while the Base column indicates the results with
conventional implementation. The quantitative results also show
that the stochastic logic is error-tolerant to transient bit flip. In
both high-pass and low-pass filter designs, the SSIM and PSNR
values of stochastic implementation are higher than ones of
baseline design. Note that the difference column of PSNR were
presented as subtraction of stochastic value and baseline value.
That is because the PSNR is in decibel (a logarithmic scale).

One interesting fact is that the high-pass filter is more prone
to faults and the low-pass stochastic design benefits more from
the error-tolerant feature. That is because low-pass filter will
smooth the picture and tolerant errors to some extents by its
nature while the high-pass filter will instead amplify the fault.

D. Hardware Cost Comparison

We synthesized and evaluated speed/area of conventional
and stochastic designs. The clock period and area of stochastic
design are both smaller than baseline design. The filter design in
stochastic design is much simpler than that of conventional one,
which leads to the lower hardware cost. The area of high-pass
filter is a little bit larger than low-pass filter because of the
additional 2-1 multiplexer involved. In addition, the low area of
stochastic design suggests that it has a fairly low power
consumption.

The stochastic logic itself is only a small portion of the area
as indicated in the last column of the table II. The area is mostly
consumed by the randomizer and de-randomizer, which are used
to covert between regular number and stochastic number.

The stochastic design will need more cycles to execute (28
in our case). In this application, the 𝑃𝑒𝑟𝑖𝑜𝑑 ∗ 𝐴𝑟𝑒𝑎 ∗ #𝐶𝑦𝑐𝑙𝑒 is
roughly the same for conventional and stochastic design (if we
only take the core module into consideration) while we can
benefits other features from stochastic logic such as error-
tolerance.

TABLE II. COMPARISON OF SYNTHESIS RESULTS OF CONVENTIONAL IMPLEMENTATION TO OUR STOCHASTIC IMPLEMENTATION

 Base
Stochastic

 Low-Pass

Stochastic (core only)

Low-Pass

Stochastic

High-Pass

Stochastic (core only)

 High-Pass

Clock Period (ns) 7.8 1.8 1.8 1.8 1.8

Synthesis Area (𝜇𝑚2) 49,687 26,796 1,063 31,222 1,461

Total Cycle 𝑵 𝑵 ⋅ 𝟐𝟖 𝑵 ⋅ 𝟐𝟖 𝑵 ⋅ 𝟐𝟖 𝑵 ⋅ 𝟐𝟖

Period∗Area∗ #Cycle 387,559N 12,347,596N 489, 830N 14,387,097N 673,228N

TABLE I. COMPARISON OF IMAGE QUALITY OF CONVENTIONAL

IMPLEMENTATION TO OUR STOCHASTIC IMPLEMENTATION

Injected

Error

SSIM PSNR(dB)

Base Sto Diff Base Sto Diff

High-Pass Filter

1% 0.407 0.447 9.83% 0.945 4.046 3.101

5% 0.174 0.205 17.82% -5.504 -3.728 1.776

10% 0.106 0.146 37.74% -7.859 -6.245 1.614

15% 0.076 0.118 55.26% -8.854 -7.476 1.378

Low-Pass Filter

1% 0.794 0.926 16.62% 25.732 33.273 7.541

5% 0.497 0.781 57.14% 17.482 21.497 4.015

10% 0.368 0.686 86.41% 13.310 15.871 2.561

15% 0.308 0.621 101.62% 10.960 12.894 1.934

V. DISCUSSION

A. Progressive Precision

In stochastic logic, a stochastic number is presented as a long
bit-stream. The longer the bit-stream is, the more accurate it is
compared to the regular binary number. This is called
progressive precision, that is, partial bit-stream may provide a
good estimate of the exact value.

There exists a tradeoff between image quality and execution
cycle time. Fig. 7 shows the resulting images when we used
different length of bit-stream to process. Since we used 8-bit
images, a 256-cycle processing is needed to achieve the exact
accuracy. As we reduced the cycle number, we could see the
quality of the images were degraded as well.

However, the image processed in low cycle number can still
be recognizable, especially for the low-pass filter. Even with just
8 cycles, the resulting image (Fig. 7c) can still provide a rough
estimate of the original picture. The reason why the low-pass
filter output can have a much better image quality with the same
cycle reduction is same as the one illustrated in section IV.C.
Basically the high-pass filter will amplify the quantization error
introduced by shorter bit-stream. This feature may be explored
to reduce the high execution cycle number and improve the
performance.

B. Other Possible Random Number Resource

The major area cost in stochastic logic is the stochastic-
binary number conversion circuits. In our case, the randomizer
(LFSR and comparator) and de-randomizer dominates the area
cost. This may not be the case if we use the stochastic logic in

practice since there will be plenty of possible random number
resource already exists in computer system so that we can get rid
of the randomizers.

We only need a “good enough” randomness resource to
decouple input streams so the random number resource does not
need to be perfect. Built-in random number generator or external
IO measurements, such as mouse movements and sensor inputs,
can both work as the randomness resource in stochastic logic
computing, thus reducing the hardware cost further [10].

VI. RELATED WORK

A. Synthesis Polynomial

A general methodology has been presented for synthesizing
stochastic logic for the computation of polynomial arithmetic
functions [8]. The method is based on converting polynomials
to into a particular mathematical form - Bernstein polynomials -
and then implementing the computation with stochastic logic.
Polynomials of interest are usually represented in power form,
and generally, a power-form polynomial of degree n can be
converted into an equivalent Bernstein polynomial of degree
greater than or equal to 𝑛 [6]. The coefficients of a Bernstein
polynomial of degree 𝑚 + 1 can be derived from the Bernstein
coefficients of an equivalent Bernstein polynomial of degree n.
We can implement the polynomials by designing a decoding
block and multiplexing block using stochastic logic. And the
circuits implemented in stochastic logic are much more error-
tolerant compared to deterministic implementations with adders
and multipliers. At the same time, the area-delay product is
about the same as that of the deterministic logic.

B. Gamma Correction

One of the applications of stochastic logic is in implementing
gamma functions. It was mentioned above that stochastic logic
can implement polynomial functions. In real applications, of
course, we often encounter non-polynomial functions, such as
the gamma function A method was proposed to synthesize
arbitrary functions by approximating them via Bernstein
polynomial. Once we obtain the requisite Bernstein coefficients,
we can implement the polynomial approximation as a Bernstein
computation with the generalized multiplexing circuit.

The gamma correction function is a nonlinear operation used
to code and decode luminance and tri-stimulus values in video
and still-image systems [6]. It is defined by a power-law
expression where 𝑉𝑖𝑛 is normalized between zero and one. We
can set gamma to be 0.45, which is the value used in most TV
cameras. Then we just have to consider the non-polynomial
function 𝑓(𝑥) = 𝑥0.45. This function can be approximated by a
Bernstein polynomial of degree 6. The Bernstein coefficients
can be obtained by solving the quadratic optimization problem.

C. Retinal Implant

Another area where stochastic logic can be applied is retinal
implant. A retinal implant is meant to partially restore useful
vision to people who have lost their vision due to degenerative
eye condition. Retinal implants provide the user with low
resolution images by electrically stimulating surviving retinal
cells. This involves designing an integrated circuit (IC) chip that
can be surgically placed on a dysfunctional retina to sense
images and convert an array of pixel streams to streams of

Original Image

High-Pass Filter

Low-Pass Filter

(a) 256 cycles (b) 64 cycles (c) 8 cycles

Fig 7. Examples images with different length of random sequence

neural-style electrical signals that stimulate useful visual
sensations.

Due to the fact that stochastic logic can handle streaming
analog data, process the data digitally and has good noise
tolerance, it has the potential to meet most of the challenging
requirements of the retinal implant application: streaming
neural-style data, very small circuit size, extremely low power
and insensitivity to noise. For example, in the retinal implant
application, a real-time edge-detecting circuit generates high-
contrast images of the environment that greatly help a vision-
impaired person to navigate correctly and avoid obstacles. The
stochastic logic circuit can be designed in a high efficient way
to meet this requirement [1].

VII. CONCLUSION

In this paper, we presented our implementation of low-pass
(smoothing) and high-pass (sharpening) filters in stochastic
logic. We found that stochastic logic filters can operate at a
faster clock frequency and consume less silicon area than
conventional filter design. While it will take more cycles to
process one pixel, stochastic logic takes advantage of
randomness to make the filter error tolerant and more reliable.
In the future, more efforts are needed to minimize the hardware
cost of conversion circuits.

ACKNOWLEDGEMENTS

We thank Professor Bertacco and Dr. Doowon Lee for
providing guidance and assistance in our project. This project is
motivated by the slides from course EECS 478, taught by
Professor John P. Hayes.

REFERENCES

[1] A. Alaghi, C.Li and J. P. Hayes. Stochastic circuits for real-time image-
processing applications. In Proceedings of the 50th Annual Design
Automation Conference (p. 136). ACM. May. 2013.

[2] M. Alioto, G. Palumbo and M. Pennisi. Understanding the effect of
process variations on the delay of static and domino logic. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 18(5), 697-710,
2010.

[3] B. D. Brown and H. C. Card. Stochastic neural computation. I.
Computational elements. Computers, IEEE Transactions on, 50(9), 891-
905, 2001.

[4] V. A. Chandrasetty. VLSI Design: A Practical Guide for FPGA and ASIC
Implementations. Springer Science & Business Media. 17-46, 2011.

[5] A. Hore and D. Ziou (2010, August). Image quality metrics: PSNR vs.
SSIM. In Pattern Recognition (ICPR), 2010 20th International
Conference on (pp. 2366-2369). IEEE, Aug. 2010.

[6] P. Li, W. Qian and D. J, Lilja. A stochastic reconfigurable architecture for
fault-tolerant computation with sequential logic. In Computer Design
(ICCD), 2012 IEEE 30th International Conference on, 303-308, IEEE,
Sep. 2012.

[7] W. Qian, X. Li, M. D. Riedel, K. Bazargan and D. J. Lilja. An architecture
for fault-tolerant computation with stochastic logic. Computers, IEEE
Transactions on, 60(1), 93-105, 2011.

[8] W. Qian and M. D. Riedel. The synthesis of robust polynomial arithmetic
with stochastic logic. In Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE (pp. 648-653). IEEE, Jun.2008.

[9] K. B. R. Teja, A. S. Warrier, A. S. Belvadi and D. R. Gawhane. Design
and implementation of neighborhood processing operations on FPGA
using verilog HDL. IOSR Journal of VLSI and Signal Processing, 4(1),
75-80, 2014.

[10] J. Ortega, C. Janer, J. Quero, L. Franquelo, J. Pinilla, and J.
Serrano,“Analog to digital and digital to analog conversion based on
stochastic logic,” in International Conference on Industrial Electronics,
Control, and Instrumentation, 1995, pp. 995–999

[11] Y. B. Tong, Q. S. Zhang and Y. P. Qi. Image quality assessing by
combining PSNR with SSIM. Journal of Image and Graphics, 12, 1758-
1763, 2006.

