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Abstract—Aggressive scaling of semiconductor devices 

exacerbates issues of reliability. Stochastic logic, which operates 

on probabilistic signals, takes advantage of randomness resulting 

in a more reliable system with simple hardware. In this paper, we 

present our stochastic design of low-pass (smoothing) and high-

pass (sharpening) filters. We modeled our design in Verilog and 

synthesized the design. The synthesis results show that stochastic 

logic can have operate at a faster clock frequency and consume less 

silicon area in specific applications compared to the conventional 

implementation. In addition, the stochastic implementations are 

much more tolerant of soft errors. 

Keywords—Stochastic Logic; Error-Tolerant Computation; 

Image Processing; Low-pass Filter; High-pass Filter 

I. INTRODUCTION 

High density of devices leads to more probable occurrences 
of errors in computer system. Transient faults, also known as 
soft errors, present a serious challenge to the correct operation 
of modern processors [2]. Soft errors including particles striking 
and ray radiation will have a larger impact on the high-density 
chips compared to the chips less progressive scaling and lower 
densities. A particle striking on the chip can cause a bit flip and 
break the entire application. Therefore, it is important to develop 
a method to enhance the reliability of the system. Our idea is to 
use stochastic logics to implement image processing hardware 
such as high-pass (sharpening) and low-pass (smoothing) filters 
and make it error-tolerant to transient faults. 

A. Stochastic Logic 

Stochastic logic operates numerical computations with 
corresponding probabilities [7]. The numerical values will be 
converted to binary value (probability) first, which is a sequence 
of random bit stream, as the input for stochastic logic. After 
computations, new binary values generated are de-randomized 
back to numerical values. It is a promising technique having a 

number of applications, especially in data intensive application 
[7]. In recent years, with the nature of stochastic logic, it has 
been successfully applied into image processing [1].  

Stochastic number (SN) is an N-bit stream with 𝑁1 1s and 
𝑁 – 𝑁1 0s and the value, which can also be called probability, 
is 𝑃 =  𝑁1/𝑁 [1].  The SN value is defined in the interval [0, 1]. 
For example, 101000 and 100011 are represented as 2/6 and 3/6, 
respectively. 

SN can be either unipolar or bipolar. If only the positive 
numbers are represented in SN value, which is 𝑃 =  𝑁1/𝑁, it is 
called unipolar SN value. If both positive numbers and negative 
numbers are represented in SN value, which is 2𝑃 − 1 (interval 
[−1,1]), it is called bipolar SN value [3].  

Stochastic logic takes more cycle number than conventional 
one. It needs 2𝑛  cycles to process a 𝑛  bit number with same 
precision, which can be a huge performance overhead in 
ordinary computation. 

However, stochastic logic performs fast computation in 
specific applications with low area and faster clock. While the 
stochastic creates more bits than traditional logics, in some cases 
it will be faster by taking advantage of statistics concept. For 
example, in Fig. 1a, the multiplication 𝑦 = 𝑥1 ⋅ 𝑥2 is directly 
computed by using a simple AND gate. Another example is 
scaled addition shown in Fig. 1b.  Using a single MUX, the 
stochastic logic can perform a weighted average easily. 

B. Error Tolerance 

Stochastic logic is error-tolerant due to its nature and can 
create analog signal states in digital-based systems. In stochastic 
logic, a normal input will take advantage of randomness and be 
transformed to a bit stream. The bit streams or wire bundles are 
digital, carrying zeros and ones, and the signal is conveyed 
through the statistical distribution of the logical values. 

A single binary value is presented with bit stream which 
reduces the impact when transient fault happens. In normal 
operations, if the significant bit of one value is corrupted, it is 
likely to have a large impact on the result. However, in the 
stochastic logics, the impact is minimized by equally 
distributing value weight to all bits in the bit stream. 

     
 

Fig 1. Examples of Simple Stochastic Logic  
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C. Filter 

Low pass filter, also called “smoothing” filter, is to remove 
high frequency components from pictures. High frequency in 
pixels indicates sharp transitions between pixels. With the low 
pass filter, image is smoothened by averaging adjacent pixels. 
Fig. 2b gives an example image of low-pass processing. 

High pass filter, also known as “sharpening” filter, is 
opposite to low-pass filter. It is used to make a picture sharper 
by enhancing high frequency signals. Fig. 2c gives an example 
image high-pass processing. 

 Image filters are implemented using neighborhood 
operations, which will modify the pixel value depending on the 
selected pixel and its neighboring pixels [4] [9]. Fig. 3 shows the 
basic low pass filter mask and high pass filter mask.   

D. Overview 

In this paper, we used stochastic logics to implement image 
processing hardware such as sharpening and smoothing filters 
and make it more error-tolerant to transient faults. To evaluate 
our results, we also implemented a baseline for comparison in 
terms of hardware cost, performance and error-tolerance 
capability.  

The remaining of this paper is organized as follows. Section 
2 introduces the architecture of stochastic design. In Section 3 
and 4, we describes our implementation and presents 
experimental results. A discussion is given in section 5 and 
followed by related work in Section 6. Finally, a conclusion is 
presented in section 7. 

 

 

II. THE STOCHASTIC ARCHITECTURE 

We present an architecture based on the ReSC architecture 
in [7]. As illustrated in Fig. 4, the stochastic logic is composed 
of three parts: the Randomizer Unit generating stochastic bit 
streams, the Stochastic Filter processing these bit streams, and 
the De-Randomizer Unit converting the resulting bit stream to 
binary output values.  

A. The Stochastic Filter 

The Stochastic Filter is the kernel of the architecture. As 
described in Section I.B, we can use a MUX to perform a 
weighted average easily. As mentioned in Section I.C, 
smoothening filter and sharpening filter have different 
parameters. We have different logic designs for these two filters.  

The sharpening filter is shown in Fig. 5. It needs bipolar 
system to support the subtraction. The probability 𝑥  of the 
independent stochastic bit stream 𝑥𝑖  is controlled by the 
Randomizer Unit. We control 𝑥  to get corresponding filter 
parameters. The logic of sharpening filter is shown in (1).  

 𝑅𝑒𝑠𝑢𝑙𝑡 = −
1

2
(

1

8
(𝑧0 + ⋯ 𝑧3 + 𝑧5 + ⋯ + 𝑧7)) +

1

2
𝑧4 

Smoothing filter has similar logic. To simplify the logic, we 
only take eight pixels into calculation, so we only use the first 
mux in Fig. 5.  Equation (2) is the smoothening filter logic. It 
works in both unipolar and bipolar system. 

 𝑅𝑒𝑠𝑢𝑙𝑡 =
1

8
(𝑧0 + ⋯ + 𝑧7) 
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Fig 5. Stochastic Filter Design 
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Fig 2. Example Images after Filter Processing 
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         Fig 4. Stochastic Architecture 
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B. The Randomizer Unit  

The Randomizer Unit is a comparator between random 
number register and constant number register. We use LFSR 
(Linear Feedback Shift Register) to generate random number 
and compare it with a constant number in each clock cycle. If 
the random number is less than the constant number, then the 
comparator generates a one; otherwise, it generates a zero.  

To generate random bit streams for 8-bit pixels, we have 9-
bit LFSR, so that the pseudo-random numbers’ period is 29 −
1 = 511, which is longer than the length of input random bit 
streams, 256. In addition, to make sure every bit of the random 
sequence in the stochastic logic is decoupled and independent of 
each other, every randomizer is configured to have different 
initial states. 

C. The De-Randomizer Unit 

The De-randomizer Unit translates the result of stochastic 
filter back to an 8-bit pixel value using a counter. It is essentially 
a counter design which counts all ones in the stochastic bit 
stream in 28 cycles. Since each bit of the stream has probability 
𝑥 of being digital value one, the mean value of the counter is    

𝑥 ⋅ 28, which is the expected value represented by the bit stream 
[7].  

III.  IMPEMENTATION 

The top-level block diagram of the system is illustrated in 
Fig. 4. We use MATLAB to pre-process images into 2-
dimentional arrays and store them into a text file as inputs of 
stochastic architecture. After the simulation of stochastic logic, 
we store output data as a 2-dimentional array using testbench 
and display picture from array with MATLAB. 

We implemented both filters (high-pass and low-pass) in 
Verilog with both conventional and stochastic implementation 
to monitor the behavior difference. To evaluate our results, we 
also implemented a baseline for comparison. The baseline filters 
were implemented in conventional way. The formulas (1) and 
(2) were directly implemented by multiplications and divisions. 

To analyze the results, we use embedded functions in 
MATLAB to calculate SSIM and PSNR values. More details 
will be covered in the next section. 
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Fig 6. Fault tolerance for the high-pass (sharpening) and low-pass (smoothing) filters. The images in the top and 

third rows are generated by a (baseline) conventional implementation. The images in the second and bottom rows 

are generated by our stochastic logic implementation. Transient errors are injected at a rate of (a) 0%; (b) 1%; (c) 

5%; (d) 10%; (e) 15%. 
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IV. EXPERIMENTAL RESULTS 

A. Methodology 

In this section, we present experimental results comparing 
conventional and stochastic implementations of low-pass and 
high-pass filter. We have implemented the hardware modules in 
Verilog and synthesized it using EECS470 Library to determine 
the clock period and silicon area. We used MATLAB as the 
interface to process the simulation outputs. The images we used 
in testing were all 8-bit grayscale pictures. 

To test the error-tolerant capability of stochastic logic, we 
randomly flipped the input of the filter at some error rate to see 
the behavior. SSIM (Structural SIMilarity) and PSNR(the peak 
signal-to-noise ratio) are used to analyze the similarity of 
pictures quantitatively. 

B. SSIM & PSNR 

We used two well-known objective image quality metrics, 
the peak-signal-to-noise ratio (PSNR) as well as the structural 
similarity index (SSIM) to measure the image quality. PSNR is 
the ratio between the reference signal and the distortion signal 
in an image, given in decibels. The higher the PSNR, the closer 
the distorted image is to the original. In most cases, a higher 
PSNR value correlate to a higher quality image. PSNR is a 
popular quality metric because it is easy and fast to calculate 
while giving reasonable results. SSIM is based on the idea that 
the human visual system is highly adapted to process structural 
information, and the algorithm attempts to measure the change 
in this information between the reference and the distorted 

image. The value of SSIM is between -1 and 1, and value 1 is 
only reachable in the case of two identical images [5] [11]. 

C. Error-tolerant 

The errors introduced were of 1%, 5%, 10% and 15% ranges 
to help analyze the relative behavior of both versions of the 
implemented hardware. The resulting pictures are shown in Fig. 
6. The 0% rate means the filter output of no error-injection case. 
Visually, we can see that the stochastic filter suffers less from 
the increasing of the errors. 

We tested ten different pictures at different error-injection 
levels and averaged the results, which were summarized in 
Table I. The Sto column indicates the results with stochastic 
implementation while the Base column indicates the results with 
conventional implementation. The quantitative results also show 
that the stochastic logic is error-tolerant to transient bit flip.  In 
both high-pass and low-pass filter designs, the SSIM and PSNR 
values of stochastic implementation are higher than ones of 
baseline design. Note that the difference column of PSNR were 
presented as subtraction of stochastic value and baseline value. 
That is because the PSNR is in decibel (a logarithmic scale).  

One interesting fact is that the high-pass filter is more prone 
to faults and the low-pass stochastic design benefits more from 
the error-tolerant feature. That is because low-pass filter will 
smooth the picture and tolerant errors to some extents by its 
nature while the high-pass filter will instead amplify the fault. 

D. Hardware Cost Comparison 

We synthesized and evaluated speed/area of conventional 
and stochastic designs. The clock period and area of stochastic 
design are both smaller than baseline design. The filter design in 
stochastic design is much simpler than that of conventional one, 
which leads to the lower hardware cost. The area of high-pass 
filter is a little bit larger than low-pass filter because of the 
additional 2-1 multiplexer involved. In addition, the low area of 
stochastic design suggests that it has a fairly low power 
consumption. 

The stochastic logic itself is only a small portion of the area 
as indicated in the last column of the table II. The area is mostly 
consumed by the randomizer and de-randomizer, which are used 
to covert between regular number and stochastic number. 

The stochastic design will need more cycles to execute (28 
in our case). In this application, the 𝑃𝑒𝑟𝑖𝑜𝑑 ∗ 𝐴𝑟𝑒𝑎 ∗ #𝐶𝑦𝑐𝑙𝑒 is 
roughly the same for conventional and stochastic design (if we 
only take the core module into consideration) while we can 
benefits other features from stochastic logic such as error-
tolerance. 

TABLE II.  COMPARISON OF SYNTHESIS RESULTS OF CONVENTIONAL IMPLEMENTATION TO OUR STOCHASTIC IMPLEMENTATION 

 Base 
Stochastic 

 Low-Pass 

Stochastic (core only)  

Low-Pass 

Stochastic 

High-Pass 

Stochastic (core only) 

 High-Pass 

Clock Period (ns) 7.8 1.8 1.8 1.8 1.8 

Synthesis Area (𝜇𝑚2) 49,687 26,796 1,063 31,222 1,461 

Total Cycle 𝑵 𝑵 ⋅ 𝟐𝟖 𝑵 ⋅ 𝟐𝟖 𝑵 ⋅ 𝟐𝟖 𝑵 ⋅ 𝟐𝟖 

Period∗Area∗  #Cycle 387,559N 12,347,596N 489, 830N 14,387,097N 673,228N 

 

TABLE I.  COMPARISON OF IMAGE QUALITY OF CONVENTIONAL 

IMPLEMENTATION TO OUR STOCHASTIC IMPLEMENTATION 

Injected 

Error 

SSIM PSNR(dB) 

Base Sto  Diff Base Sto Diff 

High-Pass Filter 

1% 0.407 0.447 9.83% 0.945 4.046 3.101 

5% 0.174 0.205 17.82% -5.504 -3.728 1.776 

10% 0.106 0.146 37.74% -7.859 -6.245 1.614 

15% 0.076 0.118 55.26% -8.854 -7.476 1.378 

Low-Pass Filter 

1% 0.794 0.926 16.62% 25.732 33.273 7.541 

5% 0.497 0.781 57.14% 17.482 21.497 4.015 

10% 0.368 0.686 86.41% 13.310 15.871 2.561 

15% 0.308 0.621 101.62% 10.960 12.894 1.934 

 



V. DISCUSSION 

A. Progressive Precision 

In stochastic logic, a stochastic number is presented as a long 
bit-stream. The longer the bit-stream is, the more accurate it is 
compared to the regular binary number. This is called 
progressive precision, that is, partial bit-stream may provide a 
good estimate of the exact value. 

There exists a tradeoff between image quality and execution 
cycle time. Fig. 7 shows the resulting images when we used 
different length of bit-stream to process. Since we used 8-bit 
images, a 256-cycle processing is needed to achieve the exact 
accuracy. As we reduced the cycle number, we could see the 
quality of the images were degraded as well. 

However, the image processed in low cycle number can still 
be recognizable, especially for the low-pass filter. Even with just 
8 cycles, the resulting image (Fig. 7c) can still provide a rough 
estimate of the original picture. The reason why the low-pass 
filter output can have a much better image quality with the same 
cycle reduction is same as the one illustrated in section IV.C. 
Basically the high-pass filter will amplify the quantization error 
introduced by shorter bit-stream. This feature may be explored 
to reduce the high execution cycle number and improve the 
performance. 

B. Other Possible Random Number Resource 

The major area cost in stochastic logic is the stochastic-
binary number conversion circuits. In our case, the randomizer 
(LFSR and comparator) and de-randomizer dominates the area 
cost. This may not be the case if we use the stochastic logic in 

practice since there will be plenty of possible random number 
resource already exists in computer system so that we can get rid 
of the randomizers. 

We only need a “good enough” randomness resource to 
decouple input streams so the random number resource does not 
need to be perfect. Built-in random number generator or external 
IO measurements, such as mouse movements and sensor inputs, 
can both work as the randomness resource in stochastic logic 
computing, thus reducing the hardware cost further [10]. 

VI. RELATED WORK 

A. Synthesis Polynomial 

A general methodology has been presented for synthesizing 
stochastic logic for the computation of polynomial arithmetic 
functions [8]. The method is based on converting polynomials 
to into a particular mathematical form - Bernstein polynomials - 
and then implementing the computation with stochastic logic. 
Polynomials of interest are usually represented in power form, 
and generally, a power-form polynomial of degree n can be 
converted into an equivalent Bernstein polynomial of degree 
greater than or equal to 𝑛 [6]. The coefficients of a Bernstein 
polynomial of degree 𝑚 + 1 can be derived from the Bernstein 
coefficients of an equivalent Bernstein polynomial of degree n.  
We can implement the polynomials by designing a decoding 
block and multiplexing block using stochastic logic. And the 
circuits implemented in stochastic logic are much more error-
tolerant compared to deterministic implementations with adders 
and multipliers. At the same time, the area-delay product is 
about the same as that of the deterministic logic. 

B. Gamma Correction 

One of the applications of stochastic logic is in implementing 
gamma functions. It was mentioned above that stochastic logic 
can implement polynomial functions. In real applications, of 
course, we often encounter non-polynomial functions, such as 
the gamma function A method was proposed to synthesize 
arbitrary functions by approximating them via Bernstein 
polynomial. Once we obtain the requisite Bernstein coefficients, 
we can implement the polynomial approximation as a Bernstein 
computation with the generalized multiplexing circuit.  

The gamma correction function is a nonlinear operation used 
to code and decode luminance and tri-stimulus values in video 
and still-image systems [6]. It is defined by a power-law 
expression where 𝑉𝑖𝑛 is normalized between zero and one. We 
can set gamma to be 0.45, which is the value used in most TV 
cameras.  Then we just have to consider the non-polynomial 
function 𝑓(𝑥) = 𝑥0.45. This function can be approximated by a 
Bernstein polynomial of degree 6. The Bernstein coefficients 
can be obtained by solving the quadratic optimization problem. 

C. Retinal Implant 

Another area where stochastic logic can be applied is retinal 
implant. A retinal implant is meant to partially restore useful 
vision to people who have lost their vision due to degenerative 
eye condition. Retinal implants provide the user with low 
resolution images by electrically stimulating surviving retinal 
cells. This involves designing an integrated circuit (IC) chip that 
can be surgically placed on a dysfunctional retina to sense 
images and convert an array of pixel streams to streams of 
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neural-style electrical signals that stimulate useful visual 
sensations.  

Due to the fact that stochastic logic can handle streaming 
analog data, process the data digitally and has good noise 
tolerance, it has the potential to meet most of the challenging 
requirements of the retinal implant application: streaming 
neural-style data, very small circuit size, extremely low power 
and insensitivity to noise. For example, in the retinal implant 
application, a real-time edge-detecting circuit generates high-
contrast images of the environment that greatly help a vision-
impaired person to navigate correctly and avoid obstacles. The 
stochastic logic circuit can be designed in a high efficient way 
to meet this requirement [1]. 

VII. CONCLUSION 

In this paper, we presented our implementation of low-pass 
(smoothing) and high-pass (sharpening) filters in stochastic 
logic. We found that stochastic logic filters can operate at a 
faster clock frequency and consume less silicon area than 
conventional filter design. While it will take more cycles to 
process one pixel, stochastic logic takes advantage of 
randomness to make the filter error tolerant and more reliable. 
In the future, more efforts are needed to minimize the hardware 
cost of conversion circuits. 
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