

ENGINEERING

UNIVERSITY OF MICHIGAN

Introduction

- Reliability is a big concern in Multi-core Processors as the technology nodes are scaling
- Inter-Core resource sharing increases reliability in presence of fault (e.g. StageNet Architecture)
- This leads to high communication delay
- 3D integration is a promising solution to increase density and performance

Objective

- Use StageNet based structure with two functionalities in case of failure
 - Arranging healthy resources in different cores to create one healthy pipeline (Virtual Pipeline)
 - Sharing healthy resources in other cores when they are not being used
- Use 3D integration to reduce communication delay and hence improve performance over 2D design
- Model Through-Silicon Vias (TSV) to simulate the 3D design and performance

Architecture

- MaPnet: Using inter-core redundancy to salvage the processor in case of faults.
 - 2D design
- Core-based 3D design
- Pipeline-based 3D design

Figure 1. A 5-satge pipeline structure for 4 cores and switches between stages

Figure 2. Three different designs for MAPnet (a) 2D structure with crossbars (b) Core-based 3D structure (c) Pipelinebased 3D structure

MaPnet: A Three-Dimensional Fabric for Reliable Multi-core Processors

Javad Bagherzadeh, Sugandha Gupta, Byounchan Oh University of Michigan, Ann Arbor

Figure 3. Single core architecture with connection to crossbar and pipeline registers

Implementation

- MAPnet design is implemented on a 4-core architecture with simple cores
- TSV delay and behavior is simulated by SPICE simulations and used to determine routing delay and processor frequency

- Both 3D designs show performance improvement over the 2D design
- The throughput increases by 1.74X
- On comparing the post-APR frequencies in faulty and healthy cores and considering Table 1, we decided to pipeline both architectures to reduce clock frequency
- Crossbars in 2D and 3D structures need 1 and 2 pipeline stages respectively.
- The RTL was synthesized using Synopsys Design Compiler and Cadence Encounter was used to create the layout

Table 2. Clock Period results after Place and Route (using Encounter)

MAPnet Design	2D	Core-based 3D	Pipeline 3D
Clock (No Fault)	2.5 ns (400 MHz)	2.5 ns (400 MHz)	2.5 ns (400 MHz)
Clock (Fault Condition)	7 ns (143 MHz)	3.95 ns (250MHz)	3.85 (260MHz)
Footprint Area	1200*1200 sq.us	600*600 sq. us	
Layout Density	71%	67%	

Conceptual 3D 4-core Design

3D architectures have performance advantage in many core designs (Figure 6)

Results

Table 1. Advantages and disadvantages of each design

Advantages	Disadvantages		
o Design	-Slow		
	-Low Scalability		
r clock Frequency	-Difficult to Design		
Dynamic	-Need extra control units		
figuration	-Area Overhead		
lexibility in Sharing			
rces			
r scalability			

Figure 5. Layouts for (a) 2D 4-core processor, (b) Basic 1-core and (c)

Figure 6. Estimated Clock Period for different number of cores for MAPnet – (a) 2D structure with crossbars (b) Core-based 3D structure (c) Pipeline-based 3D structure

- into pipeline structure to use resources in other cores
- extra delay cycles added in pipeline structure which is reflected in Figure 7.

- IPC was measured for each scenario
- Figures 8 reflect the results for baseline 2D and 3D pipelined structures regarding sharing the same resource and no sharing.

numbers and locations within pipeline stages

Scenario	Number of Faults	Disabled Resources
Scenario 1	2	IFO, EX1
Scenario 2	4	IFO, ID1, EX2, WB3
Scenario 3	10	IF0, ID1, EX0, MEM1, WB0, IF2, ID3, EX2, MEM3, WB2

- Improvement with 2D and 3D StageNet compared 2 baseline
- 16.3% on average and up to 28.2% improvement in 3D compared to 2D
- area of our 3D design is under than 25% of the traditional 2D design due to reduced interconnection complexity.

Conclusion

- 3D reconfigurable pipeline design, named MaPNet.
- more-reliable operation, higher performance, lower cost, and/or lower power consumption by taking advantage of the redundancy and capabilities available at each layer in the system stack.

Fall 2015

Each fault forces the processor to reconfigure and adds extra delays cycles

We simulated a single core for different test cases and measured the IPC for