EECS 579: Memory Testing

Recap: Processor Testing

- Complexity requires high-level, functional testing methods
- Fault models not well defined
- Practical tests tend to be heuristic:
 - **CPU**: Bootstrap testing to exercise all circuits and instructions
 - **Memory**: Special, regular exercising tests
 - **I/O Circuits**: Similar to memory tests, with loopback
- Programmable systems such as microcontrollers are tested by (diagnostic) programs
- Intellectual property (IP) cores are especially hard to test

Computer Memory System

```
CPU
  Register file
  IC 1 (microprocessor)

Cache (level 1) → Cache (level 2) → Main memory → Secondary memory

ICs 2m
ICsm

Hard disks, etc.
```
SRAM and RAM Cells

(a)

(b)

DRAM Access Circuitry

Address decoder

Word line \(L = 1 \)

Storage cell

Bit line \(L \)

Disabled input (drive) amplifier

Enabled output (sense) amplifier

Input-output data bus \(B \)
DRAM Technology Development

- 1970: First commercial DRAM introduced by Intel at 1024 b = 1 Kbit
- 1984: Apple Macintosh 1 personal computer introduced with a multichip 128-Kbyte RAM

![Graph showing the number of memory cells per chip over the years](image)

Testing Time for n-bit RAM

<table>
<thead>
<tr>
<th>Size</th>
<th>Number of Test Algorithm Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>1 Mb</td>
<td>0.06</td>
</tr>
<tr>
<td>4 Mb</td>
<td>0.25</td>
</tr>
<tr>
<td>16 Mb</td>
<td>1.01</td>
</tr>
<tr>
<td>64 Mb</td>
<td>4.03</td>
</tr>
<tr>
<td>256 Mb</td>
<td>16.11</td>
</tr>
<tr>
<td>1 Gb</td>
<td>64.43</td>
</tr>
<tr>
<td>2 Gb</td>
<td>128.9</td>
</tr>
</tbody>
</table>
IC Fault Types

Permanent Faults
- Missing/added electrical connection
- Broken component (IC mask defect or silicon-to-metal connection)
- Burnt-out chip wire
- Corroded connection between chip and package

Intermittent Faults
- Loose connections
- Aging components (changed logic delays)
- Hazards and races in critical timing paths (bad design)
- Resistor, capacitor, inductor variances (timing faults)
- Physical irregularities (narrow wire -- high resistance)
- Electrical noise (memory state changes)

IC Fault Types

Transient Faults
- Cosmic rays
- α particles (ionized Helium atom)
- Air pollution (causes wire short/open)
- Humidity (temporary short)
- Temperature (temporary logic error)
- Pressure and vibration (temporary wire open/short)
- Power supply fluctuation (logic error)
- Electromagnetic interference (signal coupling)
- Static electrical discharge (change state)
- Ground loop (misinterpreted logic value)
RAM Tests

Requirements
- Good fault coverage
- Easy to program in ATE
- Reasonable test complexity (application time)

Standard Tests
- **Checkerboard Test:** basic test that writes 0's and 1's into alternating cells. Complexity is $O(n)$ in terms of the number of reads and writes

- **Walk/March Tests:** write 0 (1) on background of 1s (0s), then read and verify the test cell; “walk/march” the test 0 (1) through the memory. Complexity is $O(n)$

- **Galloping Tests:** write 0 (1) on background of 1s (0s), then read all cells; move 0 (1) through the memory. Complexity is $O(n^2)$, which is generally impractical now.

 Many variants of the above tests exist.

Checkerboard Test

<table>
<thead>
<tr>
<th>Write 1 (0) in every even (odd) address cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pause for refresh. Read and verify every cell.</td>
</tr>
</tbody>
</table>

No. of R/W steps

<table>
<thead>
<tr>
<th>Storage array</th>
<th>Sense amplifiers</th>
<th>Storage array</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Total: 4n</td>
<td></td>
<td>n</td>
</tr>
</tbody>
</table>
Standard RAM Tests

Walking 0s/1s Test

Write 0 every cell.
For i = 0 to n – 1 do {
 Write 1 in test cell C_i;
 Read and verify C_i;
 Write 0 in C_i;
 i := i + 1;
}

No. steps

\[n \times n \]

Repeat with 0 and 1 switched: Total no. steps: 8n

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Standard RAM Tests

March Test Notation

- r Read a memory location
- w Write a memory location
- r0 Read a 0 from a memory location
- r1 Read a 1 from a memory location
- w0 Write a 0 to a memory location
- w1 Write a 1 to a memory location
- ↑ Write a 1 to a cell containing 0
- ↓ Write a 0 to a cell containing 1
- ‹ Complement the cell contents
- ‹‹ Increasing memory addressing
- † Decreasing memory addressing
- †† Either increasing or decreasing
March Test Example

MATS+ Algorithm

M0: {March element \(\uparrow(w_0)\)}
for cell := 0 to n – 1 (or any other order) do
 write 0 to A[cell];
M1: {March element \(\uparrow(r_0, w_1)\)}
for cell := 0 to n – 1 do
 read A[cell]; {Expected value = 0}
 write 1 to A[cell];
M2: {March element \(\downarrow(r_1, w_0)\)}
for cell := 0 to n – 1 down to 0 do
 read A[cell]; {Expected value = 1}
 write 0 to A[cell];
end;

Memory Functional Faults

- Cell stuck
- Read/write line stuck
- Data line stuck
- Short circuit between data lines
- Address line stuck
- Shorts between address lines
- Wrong address access
- Cell can be set to 0 but not to 1 (or vice versa)
- Pattern sensitive cell interaction

Reduced Set
- Stuck-at faults
- Transition faults
- Coupling faults
- Neighborhood pattern sensitive faults
Memory Functional Faults

Stuck-at Faults

(a) State diagram of a good cell.

(b) SA0 fault. (c) SA1 fault.
Memory Testing Summary

- Multiple fault models are essential
- Combinations of tests are essential:
 - March tests: SRAMs and DRAMs
 - NPSF tests: DRAMs
 - DC parametric tests: Both
 - AC parametric tests: Both
- Inductive fault analysis is now desirable