Permanent vs. Temporal Defects

- **Permanent defects**
 - The faulty behavior lasts forever.
 - For example, a metal residue connects a gate input and VDD. (stuck-at 1 fault)
- **Temporal defects**
 - The faulty behavior lasts for a finite time T.
 - If T is greater than the specified threshold, the temporal defects make the circuit under test fail to operate in the designed time.
 - Temporal defects are usually revealed as a longer delay of a gate or a path.
Growing Importance of Delay Fault Testing

- Integrated circuit technology trends
 - Increasing circuit speeds
 - 2 GHz Pentium4 = 0.5 ns clock cycle
 - Narrowing process feature size
 - 0.3 μm ASIC process; 0.1x μm DRAM process

- Imperfect manufacturing process
 - Defect mechanisms increasing circuit delays
 - Process variations - e.g. decreased interconnection wire width
 - Spot defects - e.g. spot laid on a interconnection wire
 - Such defects could be more dominant in future

Delay Faults

- Defects resulting in slow 0 → 1 or 1 → 0 signal changes so that the circuit under test cannot operate in the specified rate.

- Sources
 - Stray capacitive loads
 - Narrow interconnects
 - Poor connections
 - Threshold voltage shift
 - Incorrect doping density
Delay Fault Models

- Basic models
 - Gate delay fault model
 - A lumped delay fault associated with a gate.
 - Assumption: a gate delay becomes large enough to make a circuit fail to operate in the specified rate.
 - Path delay fault model
 - A distributed delay fault associated with a path.
 - Realistic fault model.

- Other models
 - Many of them are variants of the path delay fault model.

Path Delay Faults

- A path is an alternating sequence of lines and gates from a primary input or a clocked flipflop to a primary output or a clocked flipflop.
- A path delay fault associated with a path p causes an excessive delay when a signal transition propagates through p.
- Two path delay faults are associated with p depending on the transition direction at the path input (slow-to-rise $\uparrow p$ and slow-to-fall $\downarrow p$).
An Example

- A sequence \(t = \langle a' b', a b' \rangle \) of input patterns propagates a rising transition through path \(adz \).
- That is, \(t \) detects a slow-to-rise fault \(f = \uparrow adz \).

Path Delay Tests

- On- and off-path inputs
 - Consider a gate \(G \) on the path \(p \) of interest. An input \(i \) of \(G \) is an on-path input of \(p \) if \(i \) is on \(p \); otherwise \(i \) is an off-path input.

- Static sensitization
 - A vector \(v \) static sensitizes a path \(p \) if \(v \) sets all off-path inputs of \(p \) to non-controlling values.

- Tests for path delay faults
 - A test \(t = \langle v_1, v_2 \rangle \) for a path delay fault \(f = \uparrow p \downarrow p \) is a sequence of two input patterns where \(v_2 \) static sensitizes \(p \) and \(t \) initiates and propagates the desired transition along \(p \).
Revisiting Example

\[t = \langle v_1, v_2 \rangle \text{ where } v_1 = \overline{a'b} \text{ and } v_2 = ab' \]

\(v_2 \) static sensitizes path \(adz \)

Path Delay Tests: Classifications

- Robust (path delay) test
 - A robust test \(t_R \) detects a fault \(f_R \) independent of the delays in the rest of the circuit under test; \(f_R \) is called a robust (path) delay fault.

- Non-robust (path delay) test
 - A non-robust test \(t_{NR} \) detects a fault \(f_{NR} \) when no other path delay fault is present; \(f_{NR} \) is called a non-robust delay fault.
Example

Is $t = <ab', ab>$ a robust or non-robust test for $f = \uparrow bcez$?

Example

Is $t = <a'b', ab'>$ robust or non-robust?
Path Delay Tests

Observations

- Signal changes produce glitches (hazards) that interact with faults in complex ways that are impractical to deal with.
- A robust test does not incur hazards while a non-robust test does.
- Some path delay faults cannot be tested.
 - E.g. $\downarrow acdz$ and $\downarrow bcez$.

Challenges

- **Huge number of faults in practical circuits**
 - The number of paths in a logic circuit can be very huge.
 - e.g. The ISCAS85 c6288 benchmark, a 16X16-bit multiplier has 1.98×10^{20} paths.
 - Very long automatic test pattern generation (ATPG) time.
 - Need large memory space to store detected and undetected faults for both ATPG and fault simulation.
 - Often path delay testing is limited to the (near) critical paths.
Test Application

- General hardware model and clock timings
 - Every line in the circuit under test (CUT) must be stable by initialization vector v_1 before test vector v_2 is applied.

Test Methodologies

- Slow-clock combinational test
 - Input and output latches are independently clocked.
 - Input and output latches can be either part of the circuit or provided by the automatic test equipment (ATE).
 - Useful when the ATE is slower than the circuit under test.
Test Methodologies

- Normal-scan sequential test
 - In test $t = \langle v_1, v_2 \rangle$, v_1 is scanned in in normal fashion.
 - v_2 is applied either by a 1-bit shift of the scan register or by propagation through the preceding combinational logic.

![Diagram of normal-scan sequential test]

- Enhanced-scan sequential test
 - A special register is used in the scan path to hold v_1 while v_2 is scanned in so that arbitrary $\langle v_1, v_2 \rangle$ delay tests can be applied.

![Diagram of enhanced-scan sequential test]