EECS 579: Built-in Self-Test 1

- System is partitioned into subcircuits suitable for BIST
- Scan design can provide controllability/observability access
- Key design goals: high fault coverage; low hardware overhead

Built-in Self-Test

Economic Case for BIST

- Overcome pin limitations (high logic-to-pin ratio) and related controllability and observability problems
- Reduce ATPG and test application times
- Lower testing cost by reducing or eliminating external ATE
- Provide “at-speed” testing for high-speed (≥ 1Ghz) circuits
- Improve testing quality (fault coverage and yield)
- Address shortage of skilled test engineers

Classification

- Concurrent (on-line)
- Nonconcurrent (off-line)
Concurrent BIST

Testing occurs “on-line” during normal operation

Design Methods
- Self-checking based on ED/EC codes
- Replicated circuits with equality checkers
- On-chip electrical monitoring

Characteristics
- No explicit test-pattern generation
- Low error detection latency
- Fault coverage often inadequate
- Limited applicability

Error-Detecting/Correcting Codes

Code Types
- Parity (Hamming)
- m-out-of-n
- Arithmetic
- etc.

Code Selection Criteria
- Error-detecting or correcting
- Number and types of errors to cover
- Separable or nonseparable
- Overhead in logic
- Overhead in delay (latency)
Parity Codes

- A parity check bit \(p \) is appended to \(n - 1 \) information bits \(x_1x_2 \ldots x_{n-1} \) to create an \(n \)-bit codeword \(x_1x_2 \ldots x_{n-1}p \).
- An error is detected if the parity
 \[x_1 \oplus x_2 \oplus \ldots \oplus x_{n-1} \oplus p \]
deviates from its normal value (even or odd).
- Parity bit generation and checking are implemented by XOR logic.
- Single-bit parity code covers single-bit errors, no double-bit errors, some unidirectional errors, and some multiple-bit errors.
- With multiple parity bits, more error coverage and/or error correction can be obtained.
- Major applications: buses and RAMs.

Parity Codes

\begin{figure}
\centering
\includegraphics[width=\textwidth]{parity_diagram}
\caption{Parity generator and checker diagram.}
\end{figure}
Arithmetic Codes

- Use arithmetic operations such as addition for encoding/decoding
- General property: with code C and arithmetic operation \ast
 \[C(N_1 \ast N_2) = C(N_1) \ast C(N_2) \]
- **3N Code**: Data word is N encoded by multiplying by 3 and decoded by dividing by 3. Nonseparable and single error detecting (SED) code. Easy to implement. Why?
- **Residue Code**: Separable code. A check word is computed as $R(N) = N \pmod{m} = \text{remainder on division by } km$. Also SED if m is odd.

Self-Checking Circuits

- Circuit C is **self-testing** if every fault produces a non-codeword output for at least one input
- C is **fault secure** if no fault produces an output that corresponds to an incorrect codeword

 Self-checking = self-testing + fault secure

- Little is known about designing general self-checking circuits; many specific cases are known.
Nonconcurrent BIST

Testing occurs “off-line” during special test mode

Design Methods
- Random or exhaustive test generation with output response compaction
- Algorithmic or deterministic test generation with prestored (compacted or uncompacted) test data

Characteristics
- High fault coverage achievable
- Applicable to most circuit types
- Long error latency
- *(Pseudo)Random*: very long tests sequences, uncertain fault coverage
- *Deterministic*: high circuit overhead

Test Generator
- **Random**:
 - Linear feedback shift register (LFSR)
 - Cellular automaton (CA)
- **Deterministic**:
 - ROM with prestored test data
 - Specially-designed FSM to generate test vectors

Response Monitor
- Direct comparison of raw responses with hardware- or software-generated reference (good) responses. Often uses multiple-input linear shift register or MISR (“miser”)
- Compression of test responses into a compact signature and comparison with prestored response signatures: “signature analysis”
Compression-Based BIST

- CUT can produce a vast amount of response data \(R \)
- Signature \(S(R) \) is used to compare the expected and observed responses.
- Some possible compression function \(S \):
 - One’s counting
 - Transition counting
 - “Signature Analysis” [Hewlett-Packard]: cyclic code checking with LFSRs
- LFSRs are also used for pseudorandom test generation.

Compression-Based BIST

System Architecture
Compression-Based BIST

Characteristics

• Applicable to moderately large combinational logic blocks including the combinational part of sequential circuits with scan

• Good response data compression: from n to $\log_2 n$ (ones/transition counting) and from n to a constant k ($k = 16$ for HP’s original Signature Analysis method)

• Loss of fault coverage due to aliasing, that is, the faulty signature = the good signature), especially with pseudorandom tests

• Aliasing can be hard to detect and eliminate

• Hard to apply to an entire system on a chip such as a microprocessor or microcontroller

One’s Counting

• Apply m vectors to the CUT and monitor the one’s count at each output z_i. If the response R at z_i has r ones, the signature is $1C(R) = r$

• For every single-output combinational CUT with m tests for any fault set F of interest, there is a test set of at most m^2 tests that detect F after compression by one’s counting.

• To construct a complete, deterministic $1C$ test set for any F in a single-output combinational circuit.

 Let $T = \{T^0, T^1\}$, where $m = |T|$ and T^d denotes all tests that produce output d. Construct a test set S containing one copy of each vector in T^0 and $|T^0| + 1$ copies of each vector in T^1.

 $S = \{S^0, S^1\}$ is the required test set.

 Proof: S fails to detect an f in F if the number of faulty responses to S^0 is the same as the number of faulty responses to S^1.

 This is impossible since at most $|T^0|$ responses to S^0 can be faulty while at least $|T^0| + 1$ responses to S^1 must be faulty.
One’s Counting (contd.)

- $1C(R)$ is independent the order of R
- Good tests produce small or large values of $1C(R)$
- Aliasing probability can be readily estimated

One’s Counting (contd.)

- Data compression is typically used with pseudorandom tests, so it is of interest to know the probability of aliasing in such cases

- Probability $P(r)$ that random tests produce R with r ones is $\binom{m}{r}/2^m$

- If all $2^m - 1$ error response sequences are equiprobable (an unrealistic assumption!), then the masking probability for a given r is

 $$P_{1C}(M|m,r) = \frac{\text{No. of masking sequences (aliases)}}{\text{No. of error sequences}} = \frac{\binom{m}{r} - 1}{2^m - 1}$$

- The overall masking probability $P_{1C}(M) = \sum_{r = 0}^{m} P_{1C}(M|m, r)P(r)$ which approaches $(\pi m)^{-0.5}$ asymptotically as m increases.

- The normalized $1C$ signature $r/2^n$ resulting from applying all test vectors to a circuit (exhaustive testing) is called the **syndrome**.
Transition Counting

- Apply m vectors to the CUT and monitor the transition count at each output z_i, i.e., the number of times a 0-to-1 or 1-to-0 change occurs.
- If the response stream is r_1, r_2, \ldots, r_m the signature is given by

$$\text{TC}(R) = \sum_{r=1}^{m} r_i \oplus r_{i+1}$$

- Unlike one’s counting, the TC signature is affected by the order in which the test vectors are applied.

![Transition Counting Diagram]

Transition Counting (contd.)

- For every single-output combinational CUT with m tests for any fault set F of interest, there is a test set of at most $2m$ tests that detect F after compression by transition counting.
- To construct a complete, deterministic TC test set for SSL faults in a single-output combinational circuit.

Let $T = \{T^0, T^1\}$, where $m = |T|$ and T^d denotes all tests that produce output d. Construct a test sequence S containing a vector from T^0 and T^1 in alternating positions. Repeat vectors from the smaller set, if necessary. S is the required test set.

Proof: (To be discussed in class)

- The overall masking probability $P_{TC}(M)$ again approaches $(\pi m)^{-0.5}$ asymptotically as m increases.