EECS 579: Built-in Self-Test 3

Outline

• Implementing BIST by regularization
 Adder
 ALU
 RAM
• Commercial BIST approaches
 LOCSD
 STUMPS
 CSTP
• Case Study
 Bosch AE11 microcontroller

Regular Circuits

• Circuits composed of (nearly) identical cells with (nearly) uniform interconnections
• Structured as n-dimensional iterative logic arrays or trees
• Regular circuits tend to be easy to test

Examples

• Random-access memories (RAMs and ROMs)
• Arithmetic circuits: adders, multipliers, etc.
• Data-transfer circuits: (de)multiplexers, decoders, etc.
• Nearly regular circuits can often be made regular for testing purposes (regularization)
Regular Circuits and BIST

(Nearly) identical test patterns implying small, easily generated test sets

(Nearly) identical responses allowing use of equality checkers as response monitors

Example: Ripple-Carry Adder

- All CF faults in an N-bit RC adder can be detected by a constant number of test patterns for any N, implying that it is C-testable.
Example: Ripple-Carry Adder

- For BIST, an N-bit RC adder can be tested using $2N + 6$ patterns that produce identical responses from all cells, implying that it is *I*-testable.
- Faults can be detected by comparing the cell outputs

![Adder Diagram]

BIST via Regularization

- Add logic as necessary to allow temporary creation of a regular array for self-testing
- Modify the cells as necessary to make the regularized array C- and/or I-testable

![Regularization Diagram]
Nearly Regular ALU: 74X381

Control logic
Four-bit datapath logic (bit-sliced)

Regularized Version of 74X381

From C_X
Added control lines

Added gates (shaded)
BIST Implementation of 74X381

Regularized 1-bit ALU modules

Test pattern generator based on NLFSR

Duplicate copy of \(C_X \)

Response shift register and equality checker

Error latch

ERROR1 ERROR2

C\(_X\) C\(_3\) C\(_2\) C\(_1\) C\(_0\)

TEST CLOCK

Regularizing a Tree Circuit: 74X154

Original circuit: 1-out-of-16 decoder/demultiplexer

Requires \(O(2^n) = 32 \) tests to detect all SSL faults

Test

Regularized circuit

Requires \(O(n) = 11 \) tests to detect all SSL faults
BIST for RAMs

Testing Problems
- High component count and density
- Complex fault types, e.g., pattern sensitivity
- Long testing times to achieve high fault coverage: \(O(N^k) \) for an \(N \)-bit RAM, \(1 \leq k \leq 2 \).
- Large overhead or limited fault coverage for self-testing via conventional techniques

BIST Approaches
- EC/ED code circuits (concurrent)
- Special non-concurrent test logic that exploits the RAM’s inherent regularity

RAM Layout

![RAM Layout Diagram]
RAM as Nearly-Regular Array

- **Address**
- **Data**
- **Control**

Self-Testing RAM [You and Hayes 88]

- Modified standard RAM with on-chip TG and RM logic
- Tests are derived from standard RAM tests and are highly regular
- Array cells are normal storage subarrays with modified peripheral circuitry
- RAM behaves like a shift register during testing
- Many cells are tested in parallel to reduce testing time

Test Derivation

- Complete test subsequences are derived for all expected RAM faults
 1. Apply read/write excitation to set of cells in all storage arrays
 2. Read test cells and background pattern
 3. Modify background pattern for next test step
- Individual test subsequences are overlapped to form a composite C/I-style test for an entire storage subarray
Self-Testing RAM

- The RAM is made fully self-testing for all recognized failure modes
- Testing time is $O(R^{0.5})$ where R is the number of cells in a storage subarray C
- Area overhead due to BIST is a few percent of total area for storage capacities in the multimegabit range
- Two or three extra I/O pins needed to initiate self-testing and observe test responses
LOCST (LSSD On-Chip Self-Test)

- Centralized and separate BIST
- (LSSD boundary) scan paths around the CUT
- Serial, LFSR-based test pattern generation and response compression

STUMPS

- Centralized and separate BIST
- Multiple scan paths without boundary scan
- Designed to have low overall testing time
CSTP (Circular Self-Test Path)

- Mixes conventional and special self-test registers
- Self-test registers have three modes: normal, scan, and test. In the test mode, the system data is XORed with scan data.

![Self-test cell diagram]

- All I/O lines are linked in a circular (boundary) scan path.

CSTP (contd.)

Features
- Initializable registers not scanned
- TG and response compression done in scan path

Advantages:
- Low area overhead
- Easy design
- Simple test control

Drawbacks:
- Low fault coverage
Case Study: Bosch AE11 Microcontroller

- Single-chip, self-testing microcontroller designed to detect hardware faults rapidly under all operating conditions
- Intended for safety-critical applications like automotive control
- Compatible with Intel 8051 8-bit ISA; 4-KB RAM and I/O modules

Self-testing Features:
- Parity checking throughout the system
- Parity checking and ALU parity prediction in the CPU datapath
- Program control-flow checking via signature monitoring
- Self-checking address decoding logic in the RAM
- Programmable watchdog timer
- Pseudorandom test and I\text{DDQ} testing of peripheral modules
- Power supply and temperature monitoring
- Test control employing boundary scan and a TAP controller

Bosch AE11 Microcontroller (contd.)

- Test controller
- Test access port (TAP)
- Analog-digital converter (ADC)
- Serial I/O
- Watchdog timer
- Misc. I/O modules
- System bus
Bosch AE11 Microcontroller (contd.)

CPU Testing

• Datapath uses parity prediction, which has low cost and is compatible with the AE11’s overall use of parity codes.
• Control unit applies parity checking to control words
• Software control-flow checking is supported: Signatures are computed during compilation and are inserted automatically into programs. Special AE11 instructions monitor these signatures.

RAM Testing

• The AE11’s fault latency requirements rule out conventional RAM BIST methods which are slow and destroy stored data
• Parity check bit are added to address and data buses
• RAM parity checkers are self-checking
• Special BIST logic detects word line and address decoder faults
• Special circuits detect bridging faults, including resistive shorts

I/O Testing

• The I/O subsystem also uses parity checking
• Peripheral modules are tested on-line via BIST logic and I\textsubscript{DDQ} testing that employs on-chip current monitors.

Test Control

• Testing functions are handled by a test controller that conforms to the IEEE 1149.1 boundary scan standard
• The special BIST logic uses pseudorandom test and signature generation implemented by LFSRs in the CPU and MISRs in the I/O modules
• The pseudorandom test patterns are believed to provide protection against unknown or “non-targeted” hardware faults, as well as standard SSL faults.
Bosch AE11 Microcontroller (contd.)

Test Management
- Start-up tests check that the major subsystems, CPU, RAM and peripheral modules, are operational
- In normal operation, concurrent checking circuits flag the errors when they occur
- CPU is interrupted periodically to execute test procedures such as the I_DDQ tests and various functional tests

Performance and Cost
- Estimated to achieve more than 99.7% coverage of modeled faults and errors
- Less than 35% chip area overhead
- Less than 15% performance loss