
EECS 583 – Class 8
Static Single Assignment Form
Classic Optimization

University of Michigan

September 29, 2014

- 1 -

Static Single Assignment (SSA) Form
❖  Difficulty with optimization

»  Multiple definitions of the
same register

»  Which definition reaches
»  Is expression available?

❖  Static single assignment
»  Each assignment to a variable is given a unique name
»  All of the uses reached by that assignment are renamed
»  DU chains become obvious based on the register name!

r1 = r2 + r3
r6 = r4 – r5

r4 = 4
r6 = 8

r6 = r2 + r3
r7 = r4 – r5

- 2 -

Converting to SSA Form
❖  Trivial for straight line code

❖  More complex with control flow – Must use Phi nodes

x = -1
y = x
x = 5
z = x

x0 = -1
y = x0
x1 = 5
z = x1

if (...)
 x = -1
else
 x = 5
y = x

if (...)
 x0 = -1
else
 x1 = 5
x2 = Phi(x0,x1)
y = x2

- 3 -

Converting to SSA Form (2)

❖  What about loops?
»  No problem!, use Phi nodes again

i = 0
do {
 i = i + 1
}
while (i < 50)

i0 = 0
do {
 i1 = Phi(i0, i2)
 i2 = i1 + 1
}
while (i2 < 50)

- 4 -

SSA Plusses and Minuses

❖  Advantages of SSA
»  Explicit DU chains – Trivial to figure out what defs reach a use
Ÿ  Each use has exactly 1 definition!!!

»  Explicit merging of values
»  Makes optimizations easier

❖  Disadvantages
»  When transform the code, must either recompute (slow) or

incrementally update (tedious)

- 5 -

Phi Nodes (aka Phi Functions)

❖  Special kind of copy that selects one of its inputs
❖  Choice of input is governed by the CFG edge along which

control flow reached the Phi node

❖  Phi nodes are required when 2 non-null paths XàZ and
YàZ converge at node Z, and nodes X and Y contain
assignments to V

x0 = x1 =

x2 = Phi(x0,x1)

- 6 -

SSA Construction

❖  High-level algorithm
1.  Insert Phi nodes
2.  Rename variables

❖  A dumb algorithm
»  Insert Phi functions at every join for every variable
»  Solve reaching definitions
»  Rename each use to the def that reaches it (will be unique)

❖  Problems with the dumb algorithm
»  Too many Phi functions (precision)
»  Too many Phi functions (space)
»  Too many Phi functions (time)

- 7 -

Need Better Phi Node Insertion Algorithm
❖  A definition at n forces a Phi node at m iff n not in DOM(m), but n in DOM(p)

for some predecessors p of m

BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

def in BB4 forces Phi in BB6
def in BB6 forces Phi in BB7
def in BB7 forces Phi in BB1

Dominance frontier
The dominance frontier of node X is the
set of nodes Y such that
 * X dominates a predecessor of Y, but
 * X does not strictly dominate Y

Phi is placed in the block that
is just outside the dominated region
of the definition BB

- 8 -

Recall: Dominator Tree

BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

BB DOM
0 0
1 0,1
2 0,1,2
3 0,1,3

BB DOM
4 0,1,3,4
5 0,1,3,5
6 0,1,3,6
7 0,1,7

Dom tree

First BB is the root node, each node
dominates all of its descendants

- 9 -

Computing Dominance Frontiers
BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

For each join point X in the CFG
 For each predecessor, Y, of X in the CFG
 Run up to the IDOM(X) in the dominator tree,
 adding X to DF(N) for each N between Y and
 IDOM(X) (or X, whichever is encountered first)

BB DF
0
1
2
3
4
5
6
7

- 10 -

Class Problem

c = b + a b = a + 1
a = b * c

b = c - a

a = a - c
c = b * c

a =
b =
c = BB0

BB1

BB2 BB3

BB4

BB5

Compute dominance frontiers for each BB

Dominator Tree

BB0

BB1

BB2 BB3 BB4 BB5

For each join point X in the CFG
 For each predecessor, Y, of X in the CFG
 Run up to the IDOM(X) in the dominator tree,
 adding X to DF(N) for each N between Y and
 IDOM(X) (or X, whichever is encountered first)

- 11 -

SSA Step 1 - Phi Node Insertion
❖  Compute dominance frontiers
❖  Find global names (aka virtual registers)

»  Global if name live on entry to some block
»  For each name, build a list of blocks that define it

❖  Insert Phi nodes
»  For each global name n
Ÿ  For each BB b in which n is defined

◆  For each BB d in b’s dominance frontier
o  Insert a Phi node for n in d
o  Add d to n’s list of defining BBs

- 12 -

Phi Node Insertion - Example

a =
c =

b =
c =
d =

a =
d =

c = d =

b =

i =

a =
b =
c =
i = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

BB DF
0 -
1 -
2 7
3 7
4 6
5 6
6 7
7 1

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)
d = Phi(d,d)
i = Phi(i,i)

a is defined in 0,1,3
 need Phi in 7
then a is defined in 7
 need Phi in 1
b is defined in 0, 2, 6
 need Phi in 7
then b is defined in 7
 need Phi in 1
c is defined in 0,1,2,5
 need Phi in 6,7
then c is defined in 7
 need Phi in 1
d is defined in 2,3,4
 need Phi in 6,7
then d is defined in 7
 need Phi in 1
i is defined in BB7
 need Phi in BB1

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)
d = Phi(d,d)

- 13 -

Class Problem

c = b + a b = a + 1
a = b * c

b = c - a

a = a - c
c = b * c

a =
b =
c = BB0

BB1

BB2 BB3

BB4

BB5

BB0

BB1

BB2 BB3 BB4 BB5

BB DF
0 -
1 -
2 4
3 4, 5
4 5
5 1

Insert the Phi nodes
Dominator tree

Dominance frontier

- 14 -

SSA Step 2 – Renaming Variables

❖  Use an array of stacks, one stack per global variable (VR)
❖  Algorithm sketch

»  For each BB b in a preorder traversal of the dominator tree
Ÿ  Generate unique names for each Phi node
Ÿ  Rewrite each operation in the BB

◆  Uses of global name: current name from stack
◆  Defs of global name: create and push new name

Ÿ  Fill in Phi node parameters of successor blocks
Ÿ  Recurse on b’s children in the dominator tree
Ÿ  <on exit from b> pop names generated in b from stacks

- 15 -

Renaming – Example (Initial State)

a =
c =

b =
c =
d =

a =
d =

c = d =

b =

i =

a =
b =
c =
i = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)
d = Phi(d,d)
i = Phi(i,i)

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)
d = Phi(d,d)

var: a b c d i
ctr: 0 0 0 0 0
stk: a0 b0 c0 d0 i0

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 16 -

Renaming – Example (After BB0)

a =
c =

b =
c =
d =

a =
d =

c = d =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a = Phi(a0,a)
b = Phi(b0,b)
c = Phi(c0,c)
d = Phi(d0,d)
i = Phi(i0,i)

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)
d = Phi(d,d)

var: a b c d i
ctr: 1 1 1 1 1
stk: a0 b0 c0 d0 i0

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 17 -

Renaming – Example (After BB1)

a2 =
c2 =

b =
c =
d =

a =
d =

c = d =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)
d = Phi(d,d)

var: a b c d i
ctr: 3 2 3 2 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 c2

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 18 -

Renaming – Example (After BB2)

a2 =
c2 =

b2 =
c3 =
d2 =

a =
d =

c = d =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a2,a)
b = Phi(b2,b)
c = Phi(c3,c)
d = Phi(d2,d)

var: a b c d i
ctr: 3 3 4 3 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 b2 c2 d2
 c3

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 19 -

Renaming – Example (Before BB3)

a2 =
c2 =

b2 =
c3 =
d2 =

a =
d =

c = d =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a2,a)
b = Phi(b2,b)
c = Phi(c3,c)
d = Phi(d2,d)

var: a b c d i
ctr: 3 3 4 3 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 c2

This just updates
the stack to remove the
stuff from the left path
out of BB1

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 20 -

Renaming – Example (After BB3)

a2 =
c2 =

b2 =
c3 =
d2 =

a3 =
d3 =

c = d =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c = Phi(c,c)
d = Phi(d,d)

a = Phi(a2,a)
b = Phi(b2,b)
c = Phi(c3,c)
d = Phi(d2,d)

var: a b c d i
ctr: 4 3 4 4 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 c2 d3
 a3

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 21 -

Renaming – Example (After BB4)

a2 =
c2 =

b2 =
c3 =
d2 =

a3 =
d3 =

c = d4 =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c = Phi(c2,c)
d = Phi(d4,d)

a = Phi(a2,a)
b = Phi(b2,b)
c = Phi(c3,c)
d = Phi(d2,d)

var: a b c d i
ctr: 4 3 4 5 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 c2 d3
 a3 d4

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 22 -

Renaming – Example (After BB5)

a2 =
c2 =

b2 =
c3 =
d2 =

a3 =
d3 =

c4 = d4 =

b =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c = Phi(c2,c4)
d = Phi(d4,d3)

a = Phi(a2,a)
b = Phi(b2,b)
c = Phi(c3,c)
d = Phi(d2,d)

var: a b c d i
ctr: 4 3 5 5 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 c2 d3
 a3 c4

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 23 -

Renaming – Example (After BB6)

a2 =
c2 =

b2 =
c3 =
d2 =

a3 =
d3 =

c4 = d4 =

b3 =

i =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a)
b1 = Phi(b0,b)
c1 = Phi(c0,c)
d1 = Phi(d0,d)
i1 = Phi(i0,i)

c5 = Phi(c2,c4)
d5 = Phi(d4,d3)

a = Phi(a2,a3)
b = Phi(b2,b3)
c = Phi(c3,c5)
d = Phi(d2,d5)

var: a b c d i
ctr: 4 4 6 6 2
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 b3 c2 d3
 a3 c5 d5

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 24 -

Renaming – Example (After BB7)

a2 =
c2 =

b2 =
c3 =
d2 =

a3 =
d3 =

c4 = d4 =

b3 =

i2 =

a0 =
b0 =
c0 =
i0 = BB0

BB1

BB2 BB3

BB4

BB6

BB7

BB5

a1 = Phi(a0,a4)
b1 = Phi(b0,b4)
c1 = Phi(c0,c6)
d1 = Phi(d0,d6)
i1 = Phi(i0,i2)

c5 = Phi(c2,c4)
d5 = Phi(d4,d3)

a4 = Phi(a2,a3)
b4 = Phi(b2,b3)
c6 = Phi(c3,c5)
d6 = Phi(d2,d5)

var: a b c d i
ctr: 5 5 7 7 3
stk: a0 b0 c0 d0 i0
 a1 b1 c1 d1 i1
 a2 b4 c2 d6 i2
 a4 c6

Fin!

BB0

BB1

BB2 BB3

BB4
BB6

BB5

BB7

- 25 -

Class Problem

c = b + a b = a + 1
a = b * c

b = c - a

a = a - c
c = b * c

a =
b =
c = BB0

BB1

BB2 BB3

BB4

BB5

BB DF
0 -
1 -
2 4
3 4, 5
4 5
5 1

Rename the variables

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)

a = Phi(a,a)
b = Phi(b,b)
c = Phi(c,c)

Dominance frontier

- 26 -

Code Optimization

- 27 -

Code Optimization

❖  Make the code run faster on the target processor
»  Other objectives: Power, code size

❖  Classes of optimization
»  1. Classical (machine independent)
Ÿ  Reducing operation count (redundancy elimination)
Ÿ  Simplifying operations
Ÿ  Generally good for any kind of machine

»  2. Machine specific
Ÿ  Peephole optimizations
Ÿ  Take advantage of specialized hardware features

»  3. Parallelism enhancing
Ÿ  Increasing parallelism (ILP or TLP)
Ÿ  Possibly increase instructions

- 28 -

A Tour Through the Classical Optimizations

❖  For this class – Go over concepts of a small subset of the
optimizations
»  What it is, why its useful
»  When can it be applied (set of conditions that must be satisfied)
»  How it works
»  Give you the flavor but don’t want to beat you over the head

❖  Challenges
»  Register pressure?
»  Parallelism verses operation count

- 29 -

Dead Code Elimination
❖  Remove any operation who’s

result is never consumed
❖  Rules

»  X can be deleted
Ÿ  no stores or branches

»  DU chain empty or dest
register not live

❖  This misses some dead code!!
»  Especially in loops
»  Critical operation

Ÿ  store or branch operation
»  Any operation that does not

directly or indirectly feed a
critical operation is dead

»  Trace UD chains backwards
from critical operations

»  Any op not visited is dead

r1 = 3
r2 = 10

r4 = r4 + 1
r7 = r1 * r4

r2 = 0 r3 = r3 + 1

r3 = r2 + r1

store (r1, r3)

- 30 -

Local Constant Propagation
❖  Forward propagation of moves

of the form
»  rx = L (where L is a literal)
»  Maximally propagate

❖  Consider 2 ops, X and Y in a
BB, X is before Y
»  1. X is a move
»  2. src1(X) is a literal
»  3. Y consumes dest(X)
»  4. There is no definition of

dest(X) between X and Y
»  5. No danger betw X and Y

Ÿ  When dest(X) is a Macro
reg, BRL destroys the value

r1 = 5
r2 = ‘_x’
r3 = 7
r4 = r4 + r1
r1 = r1 + r2
r1 = r1 + 1
r3 = 12
r8 = r1 - r2
r9 = r3 + r5
r3 = r2 + 1
r10 = r3 – r1

Note, ignore operation format issues, so
all operations can have literals in either
operand position

- 31 -

Global Constant Propagation
❖  Consider 2 ops, X and Y in

different BBs
»  1. X is a move
»  2. src1(X) is a literal
»  3. Y consumes dest(X)
»  4. X is in a_in(BB(Y))
»  5. Dest(x) is not modified between

the top of BB(Y) and Y
»  6. No danger betw X and Y

Ÿ  When dest(X) is a Macro reg,
BRL destroys the value

r1 = 5
r2 = ‘_x’

r1 = r1 + r2 r7 = r1 – r2

r8 = r1 * r2

r9 = r1 + r2

- 32 -

Constant Folding
❖  Simplify 1 operation based on values of src operands

»  Constant propagation creates opportunities for this
❖  All constant operands

»  Evaluate the op, replace with a move
Ÿ  r1 = 3 * 4 à r1 = 12
Ÿ  r1 = 3 / 0 à ??? Don’t evaluate excepting ops !, what about floating-point?

»  Evaluate conditional branch, replace with BRU or noop
Ÿ  if (1 < 2) goto BB2 à BRU BB2
Ÿ  if (1 > 2) goto BB2 à convert to a noop

❖  Algebraic identities
»  r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0

Ÿ  r1 = r2
»  r1 = 0 * r2, 0 / r2, 0 & r2

Ÿ  r1 = 0
»  r1 = r2 * 1, r2 / 1

Ÿ  r1 = r2

- 33 -

Class Problem
r1 = 0
r2 = 10
r3 = 0

r4 = 1
r7 = r1 * 4
r6 = 8
if (r3 > 0)

store (r1, r3)

Optimize this applying
1. constant propagation
2. constant folding

r2 = 0
r6 = r6 * r7
r3 = r2 / r6

r3 = r4
r3 = r3 + r2
r1 = r6

r2 = r2 + 1
r1 = r1 + 1
if (r1 < 100)

- 34 -

Forward Copy Propagation
❖  Forward propagation of the RHS

of moves
»  r1 = r2
»  …
»  r4 = r1 + 1 à r4 = r2 + 1

❖  Benefits
»  Reduce chain of dependences
»  Eliminate the move

❖  Rules (ops X and Y)
»  X is a move
»  src1(X) is a register
»  Y consumes dest(X)
»  X.dest is an available def at Y
»  X.src1 is an available expr at Y

r1 = r2
r3 = r4

r2 = 0 r6 = r3 + 1

r5 = r2 + r3

- 35 -

CSE – Common Subexpression Elimination
❖  Eliminate recomputation of an

expression by reusing the previous
result

»  r1 = r2 * r3
»  à r100 = r1
»  …
»  r4 = r2 * r3 à r4 = r100

❖  Benefits
»  Reduce work
»  Moves can get copy propagated

❖  Rules (ops X and Y)
»  X and Y have the same opcode
»  src(X) = src(Y), for all srcs
»  expr(X) is available at Y
»  if X is a load, then there is no store

that may write to address(X) along
any path between X and Y

r1 = r2 * r6
r3 = r4 / r7

r2 = r2 + 1 r6 = r3 * 7

r5 = r2 * r6
r8 = r4 / r7
r9 = r3 * 7

if op is a load, call it redundant
load elimination rather than CSE

- 36 -

Class Problem
Optimize this applying
1. dead code elimination
2. forward copy propagation
3. CSE

r4 = r1
r6 = r15
r2 = r3 * r4
r8 = r2 + r5
r9 = r
r7 = load(r2)
if (r2 > r8)

r5 = r9 * r4
r11 = r2
r12 = load(r11)
if (r12 != 0)

r3 = load(r2)
r10 = r3 / r6

r11 = r8
store (r11, r7)

store (r12, r3)

- 37 -

Loop Invariant Code Motion (LICM)
❖  Move operations whose source

operands do not change within
the loop to the loop preheader
»  Execute them only 1x per

invocation of the loop
»  Be careful with memory

operations!
»  Be careful with ops not

executed every iteration

r1 = 3
r5 = &A

r4 = load(r5)
r7 = r4 * 3

r8 = r2 + 1
r7 = r8 * r4 r3 = r2 + 1

r1 = r1 + r7

store (r1, r3)

- 38 -

LICM (2)
❖  Rules

»  X can be moved
»  src(X) not modified in loop body
»  X is the only op to modify dest(X)
»  for all uses of dest(X), X is in the

available defs set
»  for all exit BB, if dest(X) is live on the

exit edge, X is in the available defs set on
the edge

»  if X not executed on every iteration, then
X must provably not cause exceptions

»  if X is a load or store, then there are no
writes to address(X) in loop

r1 = 3
r5 = &A

r4 = load(r5)
r7 = r4 * 3

r8 = r2 + 1
r7 = r8 * r4 r3 = r2 + 1

r1 = r1 + r7

store (r1, r3)

Homework 2 eliminates the last rule. You
can also ignore the executed on every iteration
rule for SpecLICM.

- 39 -

Global Variable Migration
❖  Assign a global variable

temporarily to a register for the
duration of the loop
»  Load in preheader
»  Store at exit points

❖  Rules
»  X is a load or store
»  address(X) not modified in the

loop
»  if X not executed on every

iteration, then X must provably
not cause an exception

»  All memory ops in loop whose
address can equal address(X)
must always have the same
address as X

r4 = load(r5)
r4 = r4 + 1

r8 = load(r5)
r7 = r8 * r4 store(r5, r4)

store(r5,r7)

