

Today's Class

- Welcome!
- Goals for the course
- Topics, what interests you?
- Introduction to security research
- Components of your grade
- Legal and ethical concerns

Who am I?

J. Alex Halderman New CSE faculty Princeton PhD, under Ed Felten

Email: jhalderm@ Office: 4717 CSE

Hours: TuTh 3:30-4:30

or by appointment

Mobile: 609-558-2312

Goals for this Course

- Gain hands-on experience
 Building secure systems
 Evaluating system security
- Prepare for research
 Computer security subfield
 Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 hax0r, but an ethical one!

Building Blocks

The security mindset, thinking like an attacker, reasoning about risk, research ethics Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators Key exchange, public-key cryptography, key management, the SSL protocol

Software Security

Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses Malware: viruses, spyware, rootkits – operation and detection Automated security testing and tools for writing secure code Virtualization, sandboxing, and OS-level defenses

Web Security

The browser security model

Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security

Network protocols security: TCP and DNS – attacks and defenses Policing packets: Firewalls, VPNs, intrusion detection Denial of service attacks and defenses Data privacy, anonymity, censorship, surveillance

Advanced Topics

Hardware security – attacks and defenses Trusted computing and digital rights management Electronic voting – vulnerabilities, cryptographic voting protocols

Getting to Know You

- Who are you?
- What topics interest you?
- What would you like to learn in this course?

What is Security Research?

"The study of how systems behave in the presence of an adversary*."

* An *intelligence* that actively tries to cause the system to misbehave.

Why Study Attacks?

- Identify flaws so they can be fixed
- Pressure vendors to be more careful
- Learn about new classes of threats
 - Motivate new research on defenses
 - Determine what we need to defend against
 - Help designers build better threat models
 - Help users more accurately evaluate risk
- Identify false design assumptions
 Improve models used for proof of security

Thinking Like an Attacker

- Look for weakest links easiest to attack
 - Insider attacks, social engineering
- Think outside the box not constrained by system designer's worldview
 - Side-channel attacks (TEMPEST, power analysis)
- Identify assumptions that security depends on – are they false?
 - e.g. cold-boot attacks

Practice thinking like an attacker:
For every system you interact with,
think about what it means for it to
be secure, and image how it could
be exploited by an attacker.

Exercises

Breaking into the CS building

Stealing an election

Exercises

Stealing my password

• What are some security systems you interact with in everyday life?

Thinking Like a Defender

- Security policy
 - What properties are we trying to enforce?
- Threat model
 - What kind of attack are we trying to prevent?
 - Who are the attackers? Capabilities? Motivations?
- Risk assessment
 - What will successful attacks cost us?
 - How likely?
- Countermeasures
 - Costs vs. benefits?
 - Technical vs. nontechnical?

Challenge is to think rationally and rigorously about risks. Controlled paranoia.

Designing a state lottery system

Exercises

Using a credit card safely

Should you lock your door?

Spotting Security Snake-Oil?

- Kerckhoffs' principle
 Should be secure even if everything about the design is public—except for the secret keys
- Roll-Your-Own Encryption
 Just because you can't break it doesn't mean it's hard to break look for AES, SHA-1, etc.
- References to Applied Cryptography
 If you need to look it up in a cryptography book,
 you probably should be consulting a cryptographer

Recall Course Goals

- Gain hands-on experience
 Building secure systems
 Evaluating system security
- Prepare for research
 Computer security subfield
 Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 hax0r, but an ethical one!

Class Participation (5%)

- 1-2 required papers for discussion in each sessions (other readings optional)
- Full points for speaking up and contributing substantial ideas
- Lose points for being silent, frequently missing class, browsing the web, etc.

Paper Responses (15%)

- <u>Brief</u> written response to each required paper (must be < 350 words/paper):
 - (1) state the problem the paper is trying to solve
 - (2) summarize its main contributions
 - (3) evaluate its strengths and weaknesses
 - (4) suggest at least two interesting open problems on related topics
 - (5) tell me if anything was too difficult to understand
- Due by email before class
 - Graded "check"/"check-"
 - Put "[reading588]" in subject line

Attack Presentation (20%)

- With a partner, choose a specific attack from recent research and implement a demonstration
- Give a 15 minute presentation:
 - (1) describe the attack
 - (2) talk about how you implemented it, give a demo
 - (3) discuss possible defenses
- Course schedule lists slots throughout the semester; see me to sign up for a topic and date

Security Reviews (20%)

- Choose a system or class of systems and briefly analyze their security
- In a 2-3 pages (<2000 words) report:
 - (1) describe the technology you are analyzing
 - (2) evaluate potential security and privacy issues
 - (3) evaluate the security of those issues
 - (4) propose ways systems could address them
- You will do three reviews during the course of the semester; more guidelines soon

Research Project (40%)

In groups, investigate a new attack or defense Should have potential to become a marketable product or conference paper, but not necessarily by the end of the term

Components (more detail to follow):

- Project proposal (5%)
- Project checkpoint (5%)
- Draft report (5%)
- Conference-style presentation in class (5%)
- Final conference-style report (20%)

15 minutes Attack presentation 45 minutes Discussion of assigned papers 10 minutes Break 40 minutes Lecture on next session's topic

Communication

Course Web Site

http://www.eecs.umich.edu/courses/eecs588/ announcements, schedule, readings

Email Me

<u>jhalderm@eecs.umich.edu</u> suggestions, questions, concerns

Law and Ethics

- Don't be evil!
 - Ethics requires you to refrain from doing harm
 - Always respect privacy and property rights
 - Otherwise you will fail the course
- Federal and state laws criminalize computer intrusion and wiretapping
 - e.g. Computer Fraud and Abuse Act (CFAA)
 - You can be sued or go to jail
- University policies prohibit tampering with campus systems
 - You can be disciplined, even expelled

Next Week

Crash-course in cryptography:
Building blocks you need to get started
No required reading;
see web site for optional reading
Find a partner and sign up soon for your attack
presentation – I'll post some topic
suggestions on the site today
Start thinking about your course project – form
a group in 2 weeks, proposal due in 1 month