

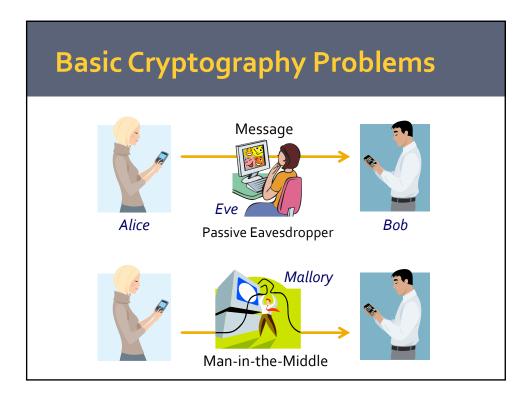
Today's Class

- The Cryptographer's View
- Hash Functions
- Message-Authentication Codes
- Block Ciphers

(BREAK)

- Generating Random Numbers
- Cipher Modes
- Padding
- Building a Secure Channel

Practical Random Oracles?


Suppose domain is size 2256...

Pseudorandom Functions (PRFs)
(A function randomly chosen from a family of PRFs is computationally indistinguishable from a Random Oracle)

≈ Message Authentication Codes (MACs)

Pseudorandom Permutations

≈ Symmetric Ciphers

Ingredients for a Secure Channel

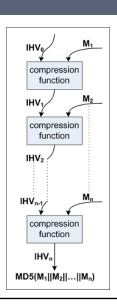
Confidentiality

Attacker can't see the message Symmetric Ciphers

Integrity

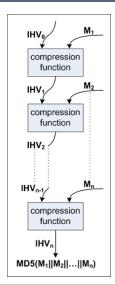
Attacker can't modify the message Message Authentication Codes (MACs)

Hash Functions


 Ideal: Random mapping from any input to a set of output

- Requirements:
 - One-way
 - Collision-resistant
- Caution! Real hashes don't match our ideal

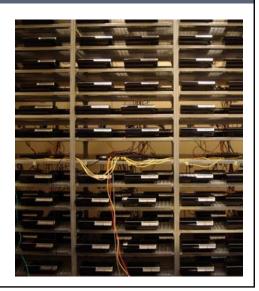
MD₅ Hash Function


- Designed in 1992 by Ron Rivest
 - 128-bit output
 - 128-bit internal state
 - 128-bit block size
- Like most hash functions, uses block-chaining construction

SHA Hash Functions

- Very in software compared to MD5
- SHA-1 standardized by NIST in 1995
 - 160-bit output and internal state
 - 512-bit block size
- SHA-256 extension published in 2001
 - 256-bit output and internal state
 - 512-bit block size
- SHA-512 extension published in 2001
 - 512-bit output and internal state
 - 1024-bit block size

Tricky! Length Extension Attacks


The *i*-th than internal state (IHV) is equivalent to the hash of the first *i* blocks.

Given hash of secret x, trivial to find hash of $x \parallel m$ for many values of m (slight issues of blocking and padding).

MD5 and SHA family all vulnerable!

MD₅ is Unsafe – Never use it!

- First flaws in 1996;
 by 2007, researchers
 demonstrated a
 collision
- Chaining allows chosen prefix attack
- Dec. 2008: others used this to fake SSL certificates (cluster of 200 PS3s)

Is SHA-1 Safe?

- Significant cryptanalysis since 2005
- Improved attacks show complexity of finding a collision < 2⁶³ (should be 2⁸⁰ – why?)
- Attacks only bet better...
- Don't use SHA-1. Use SHA-256 until we have something better.

Message Authentication Codes

- Prevents tempering with messages.
 Like a family of pseudorandom functions,
 with a key to select among them
 - Inputs:
 Fixed sized key K
 Arbitrary length message m
 - Output: Fixed sized MAC code, MAC(K, m)
- Security properties of a Hash on both inputs

Construction: HMAC

Given a hash function H: $HMAC(K,m) = H((K \oplus pad_1) || H(K \oplus pad_2) || m)$

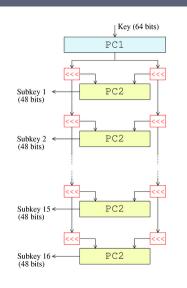
Provides nice provable security properties

What Should You Use?

- What should you use when you need a hash function?
 - Conservative answer: Use HMAC-SHA256
 - Avoids length extension attacks

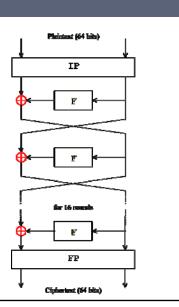
One-Time Pads

Provably secure encryption...

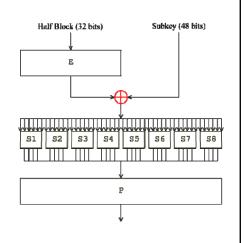

... that often fails in practice.

Block Ciphers

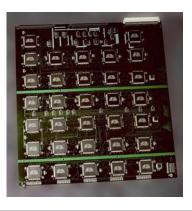
- Ideal block cipher:
 Like a family of pseudorandom permutations with a key to select among them
- Unlike hashes and MACs, ciphers are invertible – encryption and decryption functions


DES—Data Encryption Standard

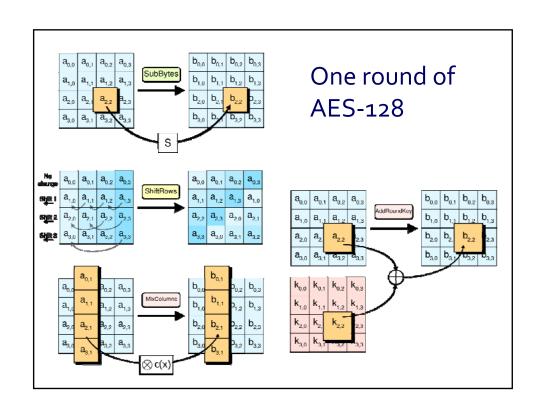
- US Government standard (1976)
- Designed by IBM Tweaked by NSA
- 56-bit key
- 64-bit blocks
- 16 rounds
- Key schedule function generates 16 round keys:


DES Encryption

- Feistel network
 - common block cipher construction
 - makes encryption and decryption symmetric—just reverse order of round keys
 - Each round uses the same Feistel function F (by itself a weak block cipher)


DES Feistel Function

- In each round:
 - Expansion Permutation E
 32 → 48 bytes
 - S-boxes ("substitution") replace 6-bit values
 - Fixed Permutation P rearrange the 32 bits


DES is Unsafe - Don't Use It!

- Design has known weaknesses
- 56-bit key way too short
- EFF's "Deep Crack"
 machine can brute force
 in 56 hours using FPGAs
 (\$250k in 1998,
 far cheaper today)
- 3-DES?

AES—Advanced Encryption Standard

- Standardized by NIST in 2001 following open design competition (a.k.a. Rijndael)
- 128-, 192-, or 256-bit key
- 128-bit blocks
- 10, 12, or 14 rounds
- Not a Feistel-network construction

How Safe is AES?

- Known attacks against 128-bit AES if reduced to 7 rounds (instead of 10)
- 128-bit AES very widely used, though NSA requires 192- or 256-bit keys for SECRET and TOP SECRET data
- What should you use?
 - Conservative answer: Use 256-bit AES

Generating Random Numbers

- What's wrong with srand() and rand()?
- Why not use a secure hash?
 - "Cryptographic Pseudorandom Number Generator" (CPRNG)
- Tricky details...
 - Seeding with true randomness ("entropy")
 - Forward secrecy
- Most OSes do the hard work for you
 - On Linux, use /dev/random and /dev/urandom

Thursday

Essential Crypto II:

Cipher Modes

Key Exchange

Public-Key Crypto

Establishing Trust