1/15/2009

Essential
Cryptography Il

EECS 588: Computer and Network Security
January 15, 2009

Today’s Class

Cipher Modes

Building a Secure Channel
Implementations

(BREAK)

Diffie-Hellman Key Exchange
RSA Encryption and Signing
Establishing Trust

Cipher Modes

How do we encrypt more than one block?
Some definitions:

P.—i-th plaintext block
C,—i-th ciphertext block
E() — encryption function
D() — decryption function
K —encryption key

Cipher Modes: ECB

“Electronic codebook” (ECB) mode
C:=E(K,P) fori=1,.., k

|II

Most “natural” construction

Never use ECB

1/15/2009

What's Wrong with ECB?

ECB Other Modes

Same plaintext block always encrypts to same ciphertext block.

Don't use ECB mode.

Cipher Modes: CBC

"Cipher-Block Chaining” (CBC) mode
C=EK P®C,) fori=z, ..k

1/15/2009

Is CBC appropriate for

C i p h e r M Od e S . C B C Encrypting an online video stream?

“Cipher-Block Chaining” (CBC) mode
C=EK P®C, fori=z,..k

Random
“Initialization
Vector”

What if you reuse the IV? Bad.

Cipher Modes: CTR

“Counter” (CTR) mode
K.:=E(K, Nonce||i) fori=1,.., k
C:=P, @K,

Stream cipher construction — like OTP
Plaintext never passes through E

Don’t need to pad the message

Must never reuse same K+Nonce (like OTP)

1/15/2009

CBCvs. CTR?

Advantages of CTR

= Doesn’t require padding

= Allows parallelization

= Only need encryption function

Advantages of CBC

= Limits leak to first block if /Vis reused
= Can use random /V instead of unique nonce

Building a Secure Channel

Never reuse

Separate
keys for
each
function

Session Key K m, 4

>

/[Initialization (Both Parties)
KeySendEnc := HMAC-SHA256(K, “Enc A-to-B")
KeyRecvEnc :=HMAC-SHA256(K, “Enc B-to-A")
KeySendAuth := HMAC-SHA256(K, “Auth A-to-B")
KeyRecvAuth := HMAC-SHA256(K, “Auth B-to-A")
if Bob then
swap(KeySendEnc, KeyRecvEnc)
swap(KeySendAuth, KeyRecvAuth)
MsgCntSend :=o0
MsgCntRecv :=0

Session Key K

Never reuse

1/15/2009

Building a Secure Channel

/| Sender

MsgCntSend := MsgCntSend + 1

i :=MsgCntSend

a := HMAC-SHA256(KeySendAuth,
i|[len(m) || m)

t:=allm

K := KeySendEnc

/[to length of t :

MsgKey := E(K, i]| o) [ECK, /]| 2)] ...

Transmit(i || (t ® MsgKey))

>

/| Receiver
i]| t:=Receive()

K := KeyRecvEnc
/[tolength of t:

MsgKey = E(K,]| o) Il ECK, /]| 2) | ...

al| m:=t® MsgKey

a':= HMAC-SHA256(KeyRecvAuth,
i|[len(my || m)

Check(a’'==a)

Check(i> MsgCntRecv)

MsgCntRecv :=i

Encrypt First or Auth First?

HMAC(E(msg)) or E(HMAC(msg)) ?

1/15/2009

Implementations: OpenSSL

Try not to implement crypto functions.
Use OpenSSL libraries if possible.

= Open source implementation
= SSL protocol plus general crypto functions
= Very fast hand-tunes assembly language

OpenSSL on the Command Line

Hashing (a.k.a. "message digest”)
$ openssl dgst -sha256 myfile

Encryption and decryption
$ openssl enc -aes-256-cbc \
-in myfile -out myfile.enc
$ openssl enc -d -aes-256-cbc \
-in myfile.enc -out myfile

Performance tests

$ openssl speed sha
$ openssl speed aes

1/15/2009

1/15/2009

OpenSSL in C - Authentication

#include <openssl/hmac.h>
#include <openssl/sha.h>
#include <openssl/evp.h>

unsigned char mac[SHA256 DIGEST_LENGTH];
mac = HMAC(
EVP_sha256(), // use SHA-256 hash function
(unsigned char*) key,
(unsigned long) keyNumBytes,
(unsigned char*) data,
(unsigned long) dataNumBytes,
NULL, NULL

)5

OpenSSL in C - Encryption

#include <openssl/evp.h>

// 256-bit AES in CBC mode with padding

void AesEncrypt(unsigned char key[32], unsigned char iv[16])

{
unsigned char inData[16], outData[16];
Int inLen, outLen;
EVP_CIPHER_CTX ctx;

EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL,
(unsigned char *)key, (unsigned char *)iv);

while ((inLen = fread(inData, 1, 16, stdin)) > @) {
EVP_EncryptUpdate(&ctx, outData, &outlLen, inData, inLen);
fwrite(outData, 1, outlLen, stdout);

EVP_EncryptFinal_ex(&ctx, outData, &outLen);
fwrite(outData, 1, outlLen, stdout);
EVP_CIPHER_CTX_cleanup(&ctx); // zeroize the key

1/15/2009

Try OpenSSL at Home

Install OpenSSL or use try it on a cluster
= Sign and encrypt a message
= Compare the speed of various functions

= Think... How does the AES implementation
compare to the speed of your Internet
connection? You hard disk? You RAM?

Use C, Python, or Perl and the OpenSSL
library to implement our secure message
passing protocol

Summary of Practical Advice

Don’t use MDg; avoid hash function pitfalls
Don’t use DES; avoid ECB mode
Don’t use rand () and its ilk

For a hash/MAC, use HMAC-SHA256
For a block cipher, use AES-256

For randomness, use the OS’s CPRNG
Forimplementations, use OpenSSL

Related Research Problems

Cryptanalysis: Ongoing work to break crypto
functions... rapid progress on hash collisions
Cryptographic function design: We
desperately need better hash functions...
NIST competition now to replace SHA

Attacks: Only beginning to understand
implications of MDg5 breaks — likely enables
many major attacks

10 Minute Break

MY CRYPTDSYSTEM 15 LIKE /\

ANY FEISTEL CPHER, EXCEPT
. PECRYFTION
INTHE 5-BOXES MPLY 2
Mmimn-ﬁg&u 01101010
FLIP IT, ANDREVERSE IT. 00”):2'0'
\ 11001010
2%

é Oloroolni

lel |1—JJ T r{_r’_'/

NN~ ala i)
ONVAASAAANAND ANANNANN A
s et S aaan
I'VE_BEEN BARRED FROM SFEAKING AT ANY MAJOR
CONFERENCES EVER SINE IT BECAME.
CLEAR THAT ALL MY ALGORITHMS WERE TJUST
THINLY DISGUISED MIssY ELLGSTT SONGS.

1/15/2009

10

Public-Key Cryptography

Problem: With symmetric ciphers, every
sender-receiver pair must share a secret key

Question: What if we could use
different keys for encryption and decryption?

Diffie-Hellman Key Exchange

Whitfield Diffie and Martin Hellman, 1976

Bob

——
Alice Passive Eavesdropper

Lets Alice and Bob establish a shared secret
even if Eve is listening in

1/15/2009

11

Diffie-Hellman Key Exchange

L Agree on a large prime p
V4 and primitive element g
) § that generates the group Z; ﬂ
Alice (p, g can be public) Bob
Chooses random
x<p (secret) a:=g*modp
Chooses random
y<p (secret)
b:=g"modp
Calculates Calculates
k:=b*mod p k:=a’mod p

Why this works:
b= (g =(gy=a (mod p)

Difficulty?

Diffie-Hellman (DH) problem:

Compute g given gand ¢ (mod p)
Best known approach: Compute x from g*
= Called the discrete logarithm (DL) problem
= No known efficient algorithm
Modular exponentiation believed to be a
one-way function

= Easy to compute
= Hard to invert

1/15/2009

12

Attacking Diffie-Hellman

k ey

4

Mallory
Chooses
randomx < p g~
Chooses
random v <p g’
Chooses
p random y <p
Chooses
gv random w < p
k= (g")" k= (g")" k':=(g"y

k=Y

RSA

Rivest, Shamir, Ln Adleman (1977)
Used for encryption and signatures

Based on a trapdoor function
= Easy to compute
= Hard to invert without special information

Based on apparent difficulty of factoring
large numbers

1/15/2009

13

RSA in One Slide

P, q large random primes
n:=pq modulus

t :=(p-1)(g-1) ensures x' =1 (mod n)
€ := [small odd value] pUb“C exponent
d:=1/emod t private exponent

Publickey: (n, e)
Private key: anyofp,gq,t d

Encryption: c:=m®modn
Decryption: m:=c?modn

Why? (m®)?=med = mk*2 = (m')m = 1km =m (mod n)

RSA for Encryption

Store secretly: d

Encryption of m
Choose random k same size as n
c:=k®modn
Send ¢, encrypt m with AES using k

Decryption
k := c®mod n; decrypt m with AES using k

i . Why don’t we use RSA to

1/15/2009

14

RSA for Signatures

ich- Why should we use a different e for
|
Pu bl ISh : (n’ e) signatures than for encryption?

Store secretly: d

= Signing m
Seed a CPRNG with m and calculate
pseudorandom string s same size as n
o:=s?modn

= Verifying a signature on m
Recalculate s from m
Check s =0*mod n

D-H with Authentication

Mallory

4

Chooses random
y<p (secret)

Chooses random

x<p (secret) a:=g<modp Sign,,..(a)

b:=g’mod p Signg,(a,b)

Verifies signature Verifies signature
Calculates Calculates
k:=b*mod p k:=a’modp

1/15/2009

15

Establishing Trust

How do Alice and Bob learn each others’
signature verification keys?

Web of Trust

= Transitive trust among associates (e.g. PGP)

Public Key Infrastructure (PKI)

= Trusted third-party Certificate Authority (CA)
binds keys-identities (e.g. SSL)

Tuesday: Crypto Attacks (I)

Optional Background Reading

= Introducing SSL and Certificates using SSLeay
Hirsch. WWW Journal, Summer 1997.

Required Reading — Responses Due Before Class

= MDs5 To Be Considered Harmful Someday
Kaminsky. 2004.

= MDs5 Considered Harmful Today

Sotirov, Stevens, Appelbaum, Lenstra, Molnar,
Osvik, and Weger. CCC 2008.

1/15/2009

16

Paper Responses

Brief written response to each required paper
(must be < 350 words/paper):

(1) state the problem the paper is trying to solve

(2) summarize its main contributions

(3) evaluate its strengths and weaknesses

(4) suggest at least two interesting open problems
on related topics

(5) tell me if anything was too difficult to understand

Due by email before class
= Graded “check”/"check-"
= Put “[reading588]” in subject line

Talk This Afternoon

Alessandro Acquisti (CMU)

“The Best of Strangers: Behavioral economics,
Malleable privacy valuations, and Context-dependent
willingness to divulge personal information”

4-5:30PM, 1202 Sl North

1/15/2009

17

