
Safe Kernel Extensions Without Run�Time Checking

George C� Necula Peter Lee

School of Computer Science

Carnegie Mellon University

Pittsburgh� Pennsylvania ��������	�

fnecula�petelg�cs�cmu�edu

Abstract

This paper describes a mechanism by which an oper�
ating system kernel can determine with certainty
that it is safe to execute a binary supplied by an
untrusted source� The kernel �rst de�nes a safety
policy and makes it public� Then� using this pol�
icy� an application can provide binaries in a spe�
cial form called proof�carrying code� or simply PCC�
Each PCC binary contains� in addition to the native
code� a formal proof that the code obeys the safety
policy� The kernel can easily validate the proof with�
out using cryptography and without consulting any
external trusted entities� If the validation succeeds�
the code is guaranteed to respect the safety policy
without relying on run�time checks�
The main practical di�culty of PCC is in gener�

ating the safety proofs� In order to gain some prelim�
inary experience with this� we have written several
network packet �lters in hand�tuned DEC Alpha as�
sembly language� and then generated PCC binaries
for them using a special prototype assembler� The
PCC binaries can be executed with no run�time over�
head� beyond a one�time cost of � to � milliseconds
for validating the enclosed proofs� The net result is
that our packet �lters are formally guaranteed to be
safe and are faster than packet �lters created using
Berkeley Packet Filters� Software Fault Isolation� or
safe languages such as Modula���

This research was sponsored in part by the Advanced

Research Projects Agency CSTO under the title �The Fox

Project� Advanced Languages for Systems Software�� ARPA Or�

der No� C�		� issued by ESC
ENS under Contract No� F��
���

���C������ The views and conclusions contained in this document

are those of the authors and should not be interpreted as repre�

senting the o�cial policies� either expressed or implied� of the

Advanced Research Projects Agency or the U�S� Government�

Appeared in Proceedings of the Second Symposium on

Operating Systems Design and Implementation �OSDI

����� Seattle� Washington� October �	
��� ����� pp

���
���

� Introduction

In this paper we address the problem of how an op�
erating�system kernel or a server can determine with
absolute certainty that it is safe to execute code sup�
plied by an application or other untrusted source�
We propose a mechanism that allows a kernel or
server	from now on referred to as the code con�
sumer	to de�ne a safety policy and then verify that
the policy is respected by native�code binaries sup�
plied to it by an untrusted code producer�
In contrast to some previous approaches� we do

not rely on the usual authentication or code�editing
mechanisms� Instead� we require that the code pro�
ducer creates its binaries in a special form� which
we call proof�carrying code� or simply PCC� A PCC
binary contains an encoding of a formal proof that
the enclosed native code respects the safety policy�
The proof is structured in such a way that makes
it easy and foolproof for any agent
and in particu�
lar� the code consumer� to verify its validity without
using cryptographic techniques or consulting with
external trusted entities� there is also no need for
any program analysis� code editing� compilation� or
interpretation� Besides being safe� PCC binaries are
also extremely fast because the safety check needs to
be conducted only once� after which the consumer
knows it can safely execute the binary without any
further run�time checking�
In a PCC binary� the proof is linked with the na�

tive code so that its validity guarantees the code
s
safety� Furthermore� proof�carrying code is tamper�
proof� the consumer can easily detect most attempts
by any malicious agent to forge a proof or modify
the code� Tampering can go undetected only if the
adulterated code is still guaranteed to respect the
consumer�de�ned safety policy� Another feature of
the PCC method is that the proof checking algo�
rithm is very simple� allowing fast and easy�to�trust
implementations�
The safety policy is de�ned and published by

the code consumer and comprises a set of proof�
formation rules� along with a set of preconditions�
Safety policies can be de�ned to stipulate standard
requirements such as memory safety� as well as more
abstract and �ne�grained guarantees about the in�
tegrity of data�abstraction boundaries� To take a
simple example� consider the abstract type of �le
descriptors� In this case� a client is said to preserve
the abstraction boundaries if it does not exploit the
fact that �le descriptors are represented as integers

by incrementing a �le descriptor� for example��

Although we have worked out many of the theo�
retical underpinnings for PCC
and indeed� most of
the theory is based on old and well�known principles
from logic� type theory ��� ���� and formal veri�ca�
tion ��� �� ���� there are many di�cult problems that
remain to be solved� In particular we do not know
at this point the most practical way to generate the
proofs� We have thus set out to gain some prelim�
inary experience� both to measure the bene�ts and
to identify the practical problems�
In the experiments reported in this paper� we

have in fact achieved fully automatic proof genera�
tion� In general� however� this problem is similar to
program veri�cation and is not completely automat�
able� Actually� the problem is somewhat easier than
veri�cation because we have the option of inserting
extra run�time checks
as is done in Software Fault
Isolation�� which would have the e�ect of simplifying
the proving process at the cost of reducing perfor�
mance� By �extra�� we mean run�time checks that
are not intrinsically a part of the algorithm of the
extension code�
For example� SFI will actually edit
the code and insert �extra� checks� PCC does not
normally do this�� Fortunately� we have not yet had
any need or desire to insert extra run�time checks
in any of our PCC examples� Still� automation of
proof generation remains as one of the most seri�
ous obstacles to widespread practical application of
PCC�
In our main experiment� we implemented several

network packet �lters ���� ��� in DEC Alpha assem�
bly language ���� and then used a special prototype
assembler to create PCC binaries for them� We were
motivated to use an unsafe assembly language in or�
der to place equal emphasis on both performance
and safety� as well as to demonstrate the generality
of the PCC approach� In addition to the assem�
bler� we implemented a proof validator that accepts
a PCC binary� checks its safety proof� and if it is
found to be valid� loads the enclosed native code
and sets it up for execution�
The results of this and other experiments are en�

couraging� For our collection of packet �lters� we

are able to automate completely the generation of
the PCC binaries� The one�time cost of loading and
checking the validity of the safety proofs is between
� and � milliseconds� Because a safety proof guar�
antees safety� our hand�tuned packet �lters can be
executed safely in the kernel address space without
adding any run�time checks� Predictably� they are
much faster than safe packet �lters produced by any
other means with which we are familiar�

We believe that our early results show that proof�
carrying code is a new point in the design space that
is worthy of further attention and study� This pa�
per presents an overview of the approach� We begin
with a brief overview of the process of generating
and validating the safety proofs� Then� we make
this more concrete by showing how a safety policy
can be de�ned and proofs created for a generic as�
sembly language� This is followed by a description of
our main experiment involving safe network packet
�lters� The benchmark results provide some prelim�
inary indication that the PCC methodology has the
potential to surpass traditional approaches from a
safety point of view while maintaining or improv�
ing performance� In particular� we show that PCC
leads to faster and safer packet �lters than previous
approaches to code safety in systems software� in�
cluding Berkeley Packet Filters ����� Software Fault
Isolation ����� and programming in the safe subset
of Modula�� ��� �� ���� Finally� we conclude with a
discussion of the remaining di�culties and speculate
on what might be necessary to make the approach
work on a practical scale�

CPU

CODE PRODUCER
USER PROCESS
UNTRUSTED CLIENT

CODE CONSUMER
OS KERNEL
NETWORK SERVER

SAFETY

POLICY

PCC

ENABLE VALIDATION

SOURCE PROGRAM

COMPILATION
&

CODE

SAFETY
BINARY

NATIVE

CERTIFICATION

PROOF

PROOF

Figure �� Overview of Proof�Carrying Code�

�

� Proof�Carrying Code

Figure � depicts the process of generating and using
a PCC binary� The process begins with the code con�
sumer de�ning and publicizing a safety policy� This
policy de�nes formally what is meant by �safety�
and also speci�es the interface between the consumer
and any binary provided by the producer� Taking
the policy into account� the code producer compiles

or assembles� and proves the safety of a source pro�
gram� through a process which we call certi�cation�
This results in a PCC binary that can be delivered to
the code consumer� Upon receipt� the consumer val�
idates the safety proof enclosed in the PCC binary�
Finally� if the proof is found to be valid� the code
consumer can safely execute the native�code part of
the PCC binary�

The following subsections describe each of these
phases in more detail� The whole process is based on
concepts from logic� semantics� and type theory� and
so the rest of this section is necessarily somewhat
technical� with most details beyond the scope of this
paper� We will thus attempt to explain only the
basic technicalities and key intuitions here� Those
readers who would like more details on the under�
lying theory can �nd them in a separate technical
report ����� The impatient reader may want to skip
ahead to Section � where we show� for the case of
network packet �lters� that proof�carrying code sur�
passes previous approaches in both safety and per�
formance�

��� De�ning a Safety Policy

The �rst order of business is to de�ne precisely what
constitutes safe code behavior� We do this by spec�
ifying a safety policy in three parts�

�� A Floyd�style veri�cation�condition generator

also referred to as the VC generator� ���� which
is a procedure that computes a predicate in
�rst�order logic based on the code to be cer�
ti�ed� We will refer to this predicate as the
safety predicate�

�� A set of axioms that can be used to validate
the safety predicate�

�� The precondition� which is essentially a �call�
ing convention� that de�nes how the code con�
sumer will invoke the PCC binaries�

It is the job of the designer of the code consumer

e�g�� the operating system designer� to de�ne the
safety policy� In practice� several di�erent safety

policies might be used� each one tailored to the needs
of speci�c tasks or services�
We obtain the VC generator by �rst specifying an

abstract machine
also called the operational seman�
tics�� that simulates the execution of safe programs�
The abstract machine is not strictly required but it
simpli�es the design of the safety policy and pro�
vides a basis for proving the soundness of the whole
approach�
In order to make all of this more concrete� we

will now present an example of an abstract machine
that speci�es a general form of memory safety for
the DEC Alpha processor� and then show how the
safety policy of a simple resource access service can
be de�ned by a precondition� The VC generator and
axioms will then be given in the next subsection�

An abstract machine for memory�safe

DEC Alpha machine code

Because the experiments in this paper use the DEC
Alpha assembly language� our abstract machine is
essentially a high�level formal description of the Al�
pha architecture ����� To see how this is done� con�
sider the subset of the Alpha instruction set shown
in Figure ��
Actually� we use a larger subset of the
DEC Alpha assembly language in our experiments�
but this smaller subset will su�ce for presentation
purposes�� In this table� n denotes an integer con�
stant and ri refers to machine register i� All in�
structions operate on ���bit values� For simplicity
we allow the use of only �� temporary and caller�
save machine registers
which� for the purpose of this
presentation� we rename r� through r���� The con�
sequence of this is that programs cannot write into
reserved and callee�save registers
according to the
standard C calling convention for the DEC Alpha ar�
chitecture�� and are thus trivially safe with respect
to these registers�

To de�ne how programs are executed� we de�ne
an abstract machine as a state�transition function�
the essential core of which is shown in Figure �� In
this speci�cation� the DEC Alpha program is a vec�
tor of instructions� �� and the current instruction is
�pc � where pc is the program counter� The variable �
denotes the state of the machine registers and mem�
ory� The state�transition function maps a machine
state
�� pc� into a new state
��� pc�� by executing
the current instruction �pc �
The notation ��ri�
often abbreviated as ri� refers

to the value of register ri in state ��
� The expres�

�Valid register values are positive integers in the range � to

��� � �� This constraint is expressed formally by the equa�

tion �ri mod ��� � ri�� which is applied to all register val�

�

op ��� n j ri i � � � � � ��
al ��� ADDQ j SUBQ j AND j OR j SLL j SRL
br ��� BEQ j BNE j BGE j BLT
instr ��� LDQ rd� n
rs� j STQ rs� n
rd� j al rs� op� rd j br rs� n j RET

Figure �� The subset of DEC Alpha assembly language�

sion ��rd � rd � �� denotes the new state obtained
from state � by incrementing the value of register
rd� So� for example� the Alpha �ADDQ rs� op� rd�
instruction is de�ned by Figure � to have the follow�
ing semantics�

��rd � rs � op�� pc � ��

where � is the current register and memory state�
This speci�cation states that the ADDQ instruction
updates register rd with the sum of rs and op� and
also increments the program counter� We use the
�circled� operation � to denote two
s�complement
addition on �� bits� This operation is de�ned in
terms of the usual integer arithmetic operations as

e� � e� �
e� � e�� mod �

�

To model the state of memory� we use a pseudo
register� called rm� that gives the content of each
memory location� We write sel
rm� a� for the con�
tents of memory address a� and upd
rm� a� rs� for
the new memory state resulted from writing register
rs to address a� Memory operations work on ���bits
and the addresses involved must be aligned on an
��byte boundary�
In the de�nition of the load and store instruc�

tions� there is a crucial di�erence between the DEC
Alpha processor and our abstract machine� The
di�erence is that our abstract machine performs
the safety checks that are shown in boxes in Fig�
ure �� For example� consider the de�nition of the
�LDQ rd� n
rs�� instruction�

��rd � sel
rm� rs � n��� pc � ��� if rd
rs � n�

The predicate rd
a� is true when it is safe to read
the word at memory address a� which for the DEC
Alpha implies that a is aligned on an ��byte bound�
ary� Similarly� the predicate wr
a� is true when the
address a denotes an aligned location that can be
safely read or written� In essence� these checks de�
�ne what is meant by safety� and more speci�cally
for this example� memory safety� For the purpose of
this paper� the predicates rd
a� and wr
a� are de�
�ned by the safety policy through the precondition�
as shown in the next subsection�
ues� Negative values are represented using two�s�complement

representation�

Mathematically� the abstract machine does not
return errors when a rd
a� or wr
a� check fails�
Instead� the execution blocks because there are no
transition rules covering the error cases� In this set�
ting� a program is safe if and only if it runs without
blocking on the abstract machine� Of course� the
presence of these safety checks means that the ab�
stract machine is not a faithful abstraction of the
DEC Alpha processor� However� the purpose of cer�
ti�cation is to prove that all safety checks always
succeed� If we have a valid safety proof for a pro�
gram� we know that we can safely execute it on a
real DEC Alpha and get the same behavior as on
our abstract machine� even though the Alpha does
not implement the safety checks�

There are other notable di�erences between our
abstract machine and a real DEC Alpha� For ex�
ample� to simplify the presentation in this paper�
we have restricted all branches to be only forward�
Allowing backward branches and loops introduces a
number of complications� but is handled in a con�
ceptually straightforward manner through the addi�
tion of explicit loop invariants� As it turns out� the
packet �lter examples we use in our experiments do
not have any loops� and so it is not inconvenient to
eliminate them here� In a later section we will brie�y
describe our experiments with looping programs� in�
cluding a safe IP�header checksum routine�
Another interesting aspect of the abstract ma�

chine is the level of abstraction of our speci�cation�
We might try to be ambitious and make a complete
speci�cation of the DEC Alpha processor� How�
ever� this would be extremely complex and proba�
bly di�cult to trust� And� as a practical matter�
for speci�c tasks such as the ones we are consid�
ering� many details and features of the Alpha are
irrelevant� This justi�es working at a higher level of
abstraction above the details of the pipeline� cache�
timing� and interrupt behavior�
We can also consider encoding other kinds of

safety checks into our abstract machine� For the
sake of simplicity� we have speci�ed only a notion of
�ne�grained memory safety� With some ingenuity�
an abstract machine designer can de�ne safety poli�
cies involving other kinds of safety� like control over
resource usage or preservation of data�abstraction

�

�� pc��

����������
���������

��rd � rs � op�� pc � ��� if �pc � ADDQ rs� op� rd

��rd � sel
rm� rs � n��� pc � ��� if �pc � LDQ rd� n
rs� and rd
rs � n�

��rm � upd
rm� rd � n� rs��� pc � ��� if �pc � STQ rs� n
rd� and wr
rd � n�

�� pc � n� ��� if �pc � BEQ rs� n and rs � �

�� pc � ��� if �pc � BEQ rs� n and rs �� �

Figure �� The Abstract Machine�

VCpc �

���������
��������

VCpc���rd � rs � op�� if �pc � ADDQ rs� op� rd

rd
rs � n� � VCpc���rd � sel
rm� rs � n��� if �pc � LDQ rd� n
rs�

wr
rd � n� � VCpc���rm � upd
rm� rd � n� rs��� if �pc � STQ rs� n
rd�

rs � �� VCpc�n��� �
rs �� �� VCpc���� if �pc � BEQ rs� n

Post � if �pc � RET

Figure �� The Veri�cation�Condition Generator�

boundaries� Once a safety policy is de�ned� applica�
tion writers are free to use it to create PCC binaries
that guarantee safety�

A sample application and its precondition

The abstract machine as given above describes safety
in terms of the abstract notions of readable and
writable memory locations� For this to be useful� the
code consumer must specify an interface to PCC bi�
naries that identi�es the readable and writable mem�
ory locations� We do this by specifying a precondi�
tion� which is a predicate in �rst�order logic that the
code consumer guarantees to be valid when the PCC
binary is invoked�

Consider the following simple example� Suppose
an operating�system kernel maintains an internal ta�
ble with data pertaining to various user processes�
Each table entry consists of two consecutive mem�
ory words	a tag and a data word� The tag describes
whether the data word is user writable or not� The
kernel also provides a resource access service through
which user processes are given permission to access
their table entry by installing native code in the ker�
nel� To make this possible the kernel invokes the
user�installed code with the address of the table en�
try corresponding to the parent process in machine
register r�� This address is guaranteed by the kernel
to be valid and aligned on an ��byte boundary�
Although this example is somewhat contrived� we

can imagine that entries in the table represent capa�
bilities
perhaps �le descriptors�� and so we would

like to provide user�installed code with full access to
the correct table entries� while maintaining the in�
tegrity of the rest of the table and other parts of the
kernel state�
Informally� the safety policy for the resource ac�

cess service requires that�
�� the user code cannot
access other table entries besides the one pointed to
by r��
�� the tag is read only�
�� the data word is
also read only unless the tag value is non zero� and�

�� the code does not modify reserved and callee�
saves registers� The last condition ensures that the
kernel can safely invoke the user code using a normal
C function call�
More formally� the kernel speci�es a precondition

Prer � which states that it is safe to read the tag
pointed to by r�� and that it is also safe to write the
data at o�set � from r� if the contents of the tag is
not �� In formal notation� this is written as follows�

Prer � r� mod �

� � r� � rd
r�� � rd
r� � ��

� sel
rm� r�� �� �� wr
r� � ��

What remains now is to prove for a particular
client of the resource access service that all rd
a�
andwr
a� checks will always succeed� given this pre�
condition and abstract machine� In general� we can
also specify a postcondition as part of the safety pol�
icy� which would require particular invariants to be
valid when the user code terminates� Conceptually�
in our example the postcondition is the predicate
true� meaning that no additional conditions are im�
posed on the �nal machine state�

Before moving on to a discussion of the proof

�

generation process� we note that the safety policy
we have described here can be thought of as enforc�
ing �ne�grained memory protection� In general� one
could imagine having much more involved safety re�
quirements� For example� we could change the tag
word in the table entry to be a semaphore that the
user code must acquire
e�g�� atomically test�and�set
to zero� before trying to write the data word� fur�
thermore� we could also require
via a simple post�
condition� that the code releases the semaphore be�
fore returning� Again� for purposes of the current
presentation� we stick to the simpler memory�safety
requirements�

��� Certifying the Safety of Programs

To create safety proofs for a program� we must prove
that executing it does not violate any of the safety
checks
and the postcondition� if one is given� is
also satis�ed�� Standard techniques exist for build�
ing such proofs� Our technique is based on Floyd
s
veri�cation conditions ���� because they are powerful
enough to deal with unstructured assembly�language
programs and a broad range of safety invariants�
Similar techniques have been used before to verify
assembly�language programs ��� ���

Certi�cation of programs involves two steps�

�� Compute the safety predicate for the program�
This essentially encodes the semantic meaning
of the program in logical form and constitutes
a formal statement that the program� when ex�
ecuted� will not violate any safety checks�

�� Generate a proof of the safety predicate� writ�
ten out in a checkable form�

Both these steps are described in the following sub�
sections�

Computing the safety predicate

To compute the safety predicate� we �rst generate
a vector VC of predicates� one for each instruction
as speci�ed by the rules in Figure �� The nota�
tion VCpc denotes the predicate for the current in�
struction� Since the rules specify VCpc in terms of
VCpc��� the veri�cation�condition VC� for the be�
ginning of the program can be computed by starting
at the end of the program and working back towards
the beginning��

�This simple approach works because all branches are re�

stricted to be forward�only� We discuss later what happens in

the presence of loops�

The rules in Figure � are derived in a straight�
forward manner from the abstract machine speci��
cation of Figure �� in fact� we imagine that experi�
enced kernel and safety policy designers would skip
the abstract machine speci�cation and give only the
VC generator rules� The notation P �rd � rs � op�
stands for the predicate obtained from P by substi�
tuting rs � op for rd�

After computing the vector VC� the safety pred�
icate is computed simply by plugging the program
�� precondition Pre � and postcondition Post into
the following formula�

SP
��Pre �Post� � 	r� � � �	r��	rm�Pre � VC�

The intuition behind a valid safety predicate is that
for any initial state that satis�es the precondition
Pre � the code � starting at the �rst instruction ex�
ecutes without failure and� if it terminates� the �nal
state satis�es the postcondition Post �

 Address of tag in r�
� ADDQ r�� �� r� Address of data in r�
� LDQ r�� ��r�� Data in r�
� LDQ r�� ���r�� Tag in r�
	 ADDQ r�� �� r� Increment Data in r�

 BEQ r�� L� Skip if tag �� �
� STQ r�� ��r�� Write back data
L� RET Done

Figure �� DEC Alpha assembly code for resource
access� Initially register r� holds the address of the
tag� The data is at the o�set � from r��

For a concrete example of client code for the re�
source access service� consider the small program
in Figure �� The overall e�ect of this program is
to increment the data word if it is writable� We
�rst compute VC� for this program using the rules
in Figure �� then we compute the safety predicate
SPr using the above formula with the precondition
Prer and the postcondition true� After a few trivial
simpli�cations� the resulting safety predicate is the
following�

SPr � 	r��	rm�Prer � rd
r� � �� � rd
r� � �
 ��
� sel
rm� r� � �
 �� � �� true
� sel
rm� r� � �
 �� �� �� wr
r� � ��

Informally� the SPr predicate says that for all val�
ues of register r� and states of memory rm satisfying
the precondition Prer � the memory locations r� � �
and r� � �
 � must be readable and if the tag
at
address r� � �
 �� is non zero� the data
at address
r� � �� must be writable� All these conditions must
be true for the code to be safe with respect to the
resource access safety policy�

�

Proving the safety predicate

We have intentionally written the program in Fig�
ure � in a slightly complicated way� to show that low�
level optimizations do not pose signi�cant problems
in generating and validating safety proofs� Three
of the interesting properties of this program are
��
the instructions are somewhat scheduled� including
speculative execution of the load in line � and of the
addition in line �� to accommodate the DEC Alpha
pipeline latency	�
�� register r� is reused in line � to
hold the data word instead of the tag address� and

�� even though the precondition is expressed as a
function of the value in register r�� some of the ac�
tual memory accesses are done through register r��
In general� we expect scheduling and register alloca�
tion to have no e�ect on the safety predicate and its
proof�
It is a simple exercise for the reader familiar with

assembly�language programming to verify that this
code is indeed correct with respect to the safety pol�
icy� The problem� of course� is how to convince even
the most suspicious kernel that this code is abso�
lutely safe� To do this� we must prove the safety
predicate according to the rules of �rst�order predi�
cate calculus extended with two
s�complement inte�
ger arithmetic� We refer to this set of proof rules
as ! and we write �

�
SP when the safety predicate

SP can be proved according to the rules in the set
!� Most of the rules in ! are simple� Below we
show two of the rules we use� the �rst being a clas�
sical implication�elimination rule from the predicate
calculus� and the second a rule about arithmetic�

�
�
Q� if �

�
P � Q and �

�
P

�
�
e� � e�
 e� � e�� if �

�
e� mod �

� � e�

The second rule is perhaps a bit surprising be�
cause e� � e� � e� � e� is unconditionally true in
integer arithmetic� However� for the machine imple�
mentation of arithmetic� this statement is true only
if the original value of e� is a valid register value�

A large fragment of the proof of the safety pred�
icate for our example program is shown in a proof�
tree form in Figure �� This proof was generated
automatically by our PCC system� which incorpo�
rates a simple theorem prover� We use vertical dots
to stand for extractions of a conjunct from the pre�
condition� You can read the proof tree from top to
bottom� interpreting every node as a valid inference
of the predicate below the line using the assumptions
above the line� For example� in the upper�right cor�
ner of the �gure the predicate r� � r� � �
 � is

�These operations are speculative because they are not re�

quired if the branch in line � is taken�

proved using the arithmetic rule we discussed with
the assumption r� mod �

� � r� extracted from the
precondition� Then wr
r� � �� is proved using the
implication�elimination rule and the hypothesis u of
the predicate sel
rm� r� � �
 �� �� �� This hypoth�
esis is introduced at a lower level in the proof tree�
at the node labeled u� for the purpose of proving the
predicate sel
rm� r� � �
 �� �� �� wr
r� � ���

The guarantee of safety

We use the proof of the safety predicate� written out
in an appropriate language
to be described in the
next section�� as the proof that the code obeys the
safety policy� This is justi�ed formally by the safety
theorem� stated below�

Theorem ��� �Safety� For any program �� pre�
condition Pre and postcondition Post� if
�
�
SP
�� P re� Post� then for any initial state �� that

satis�es the precondition and for any abstract ma�
chine state
�� pc� originating from the initial state

��� ��� one of the following is true�

�� The state
�� pc� is a �nal state �i�e� �pc �
RET	 satisfying the postcondition Post� or

� The execution is not stuck� i�e�� there exists a
new state
��� pc�� such that
�� pc��
��� pc���

Since the abstract machine gets stuck when there
is any violation of an rd
a� or wr
a� safety check�
this theorem provides an absolute guarantee that a
certi�ed program will not have such violations� as
long as its execution is started in a state that satis�es
the precondition�
The proof of the Safety Theorem is beyond the

scope of this paper� but can be found in a separate
technical report �����

��� Validating the Safety Proofs

A PCC binary consists of the assembled native code
together with an encoding of the proof of its safety
predicate� To validate the binary� the code consumer
�rst extracts the native code and then computes its
safety predicate using the VC rules� Then� it checks
that the safety proof is a valid proof of the safety
predicate�
This method ensures safety even if the native

code or the proof in the PCC binary is tampered
with� If the code is modi�ed� then in all likelihood
its safety predicate changes� so the given proof will
not correspond to it� If the proof is modi�ed� then
either it will be invalid� or else not correspond to
the safety predicate� If the code is modi�ed in such

�

Prer

Prer Prer u r� mod ��� � r�

Prer

sel�rm� r� � 	� 	� �� � r� � r� � 	� 	

r� mod ��� � r� sel�rm� r�� �� �� wr�r� � 	� sel�rm� r�� �� �

rd�r�� r� � r� � 	� 	 wr�r� � 	�
u

rd�r� � 	� 	� sel�rm� r� � 	� 	� �� �� wr�r� � 	� � � �

rd�r� � 	� 	� � �sel�rm� r� � 	� 	� �� �� wr�r� � 	�� � � � �
Prer

Prer � rd�r� � 	� 	� � �sel�rm� r� � 	� 	� �� �� wr�r� � 	�� � � � �

�r���rm�Prer � rd�r� � 	� 	� � �sel�rm� r� � 	� 	� �� �� wr�r� � 	�� � � � �

Figure �� A Fragment of the formal safety proof of SPr�

a way that the safety predicate is unchanged
for
example� instruction scheduling and register alloca�
tion might do this in typical circumstances�� or if
both the code and the proof are modi�ed so that we
still have a valid proof of the new safety predicate�
the validation succeeds and we continue to retain a
guarantee of safety�

To automate the validation process� we must
�rst choose a concrete representation language for
predicates and their proofs� From the many avail�
able choices� we have selected the Edinburgh Logical
Framework ���
also called LF� as the representation
framework for predicates and proofs� LF is an ex�
tension of the simply typed lambda calculus and was
designed as a meta language for high�level speci�ca�
tion of languages in logic and computer science� The
most attractive property of LF is that it has a pow�
erful yet simple typechecking algorithm� which we
use to check the validity of proofs�
We represent the predicates and the proofs in LF

in such a way that the validity of a proof is im�
plied by the well typedness of the proof representa�
tion� Thus� proof validation amounts to typecheck�
ing� Also� LF allows us to represent in an elegant
way a few key issues in logical proof correctness�
such as the manipulation of logical parameters and
assumptions� It is well beyond the scope of this pa�
per to discuss in detail LF and the typechecking al�
gorithm� however it is worth mentioning that type�
checking is decidable and is described by a few sim�
ple rules� Indeed� typechecking is so simple that any
programmers who do not trust the publicly available
implementation can implement it easily themselves�
Our implementation has about �ve pages of C code�
even though it incorporates a few optimizations to
the basic algorithm� With this implementation� it
takes ��� milliseconds to validate the proof of the

SPr predicate�

For �exibility and to allow easy exchange of
proofs between system components� we have de�
signed a binary encoding of LF representations�
Thus� a typical PCC binary contains a section with
the native code ready to be mapped into memory
and executed� followed by a symbol table used to
reconstruct the LF representation at the code con�
sumer site� and the binary encoding of the LF rep�
resentation of the safety proof� Figure � shows the
sizes of these sections for the PCC binary corre�
sponding to the resource access example�

SECTION

NATIVE CODE

SECTION

220

RELOCATION

PROOF

45

0

340

SECTION

Figure �� The layout of the PCC binary for the re�
source access example� The o�sets are in bytes�

Currently� PCC binaries for standard packet �l�
ters� including the native code� safety proof� and re�
location section� are about ��� to ���� bytes in size�
with the proof about � times larger than the code�
The size of the relocation section increases linearly
with the number of distinct proof rules used in the
proof� In the case of packet �lter safety proofs� the
relocation section is a third of the binary but we
expect this ratio be much smaller for larger proofs�
There is a considerable amount of design latitude

�

in the encodings of the proofs� and we have barely
scratched the surface on what can be done to reduce
the size of the binaries as well as the time required
for validation� But already� with relatively little ef�
fort� we have achieved acceptably small binaries and
low validation times�

� Application� Network Packet Filters

In order to gain more experience with PCC and to
compare it with other approaches to code safety� we
have performed a series of experiments with safe net�
work packet �lters� We describe in this section the
particulars of the PCC approach to network packet
�lters� Then in Section ���� we compare it with other
approaches including interpreted packet �lters
as
exempli�ed by the BSD Packet Filter�� code editing

through Software Fault Isolation�� and using a safe
programming language
the approach taken in the
SPIN kernel��

A packet �lter is an application�provided subrou�
tine that scans each incoming network packet and
decides whether the user application is interested
in receiving it or not� Packet �lters are supported
by most of today
s workstation operating systems�
Since their �rst introduction in ����� packet �lters
have been used successfully in network monitoring
and diagnosis�
In the PCC approach the packet �lter is a PCC

binary whose native code component is invoked by
the kernel on each incoming network packet� Kernel
safety is ensured by validating the safety proof�
Following the procedure described in Section �

we �rst establish a safety policy� To allow for a fair
comparison we follow the BSD Packet Filter model
of safety� The packet �lter code can examine the
packet at will and can also write to a statically allo�
cated scratch memory� Informally� the safety policy
requires that�
�� memory reads are restricted to the
packet and the scratch memory�
�� memory writes
are limited to the scratch memory�
�� all branches
are forward� and
�� reserved and callee�saves reg�
isters are not modi�ed� These rules establish mem�
ory safety and termination assuming that the kernel
calls the packet �lter with valid packet and scratch
memory addresses�
We write the packet �lter code assuming that the

return value must be in r�� the aligned address and
the length of the packet �lter are given in r� and
r� respectively� and the address of a ���byte aligned
scratch memory is given in r	� Moreover the packet
s
length is positive and at least ���bytes
the mini�
mum length of an Ethernet packet�� Formally this

is expressed as the precondition�

Pre � r� mod �

� � r� �

r� mod �

� � r� � r� � �

	 � r�
 �� �
r	 mod �

� � r	 �
	i�
i
 � � i � r� �
i " �� � ��

� rd
r� � i� �
	j�
j
 � � j � �� �
j " �� � ��

� wr
r	 � j� �
	i�	j�
i
 � � i � r� � j
 � � j � ���

�
r� � i �� r	 � j�

The �rst few conjuncts of the precondition restrict
the values of input registers to valid machine word
values� The last term of the precondition rules out
the possibility of memory aliasing between packets
and the scratch memory� This is useful when reason�
ing about �lters that write to the scratch memory�
The postcondition in our packet �lter experiment

is the predicate true� meaning that no additional
conditions are placed on the �nal state�

We have implemented four typical packet �lters
in assembly language and certi�ed their safety with
respect to the packet �lter safety policy� Filter �
accepts all IP packets� This is done by comparing
a ���bit word in the packet to a given value� Fil�
ter � accepts IP packets originating from a given
network� This involves checking a ���bit value in
addition to the work done by Filter �� Filter � ac�
cepts IP or ARP packets exchanged between two
given networks� This includes all the work done by
Filter � with the addition of checking the destina�
tion network address� Extra complexity is required
because of di�erent header layout of IP and ARP
packets� Filter � accepts all TCP packets with a
given destination port� This �lter has to check that
the Ethernet packet is an IP packet� then that it is
a TCP packet� and lastly that the destination port
matches a given value� The o�set of the TCP desti�
nation port is computed based on a byte in the IP
header
the length of the IP header��
The e�ort involved in hand�coding packet �lters

in assembly language is repaid in increased perfor�
mance� because packet �lters are usually small and
very frequently executed� Hand�coding provides the
opportunity to perform optimizations that are dif�
�cult to obtain from an optimizing compiler� The
important point is that these optimizations are not
an impediment to generation and validation of safety
proofs� Here are a few optimizations that we incor�
porated in our packet �lters�

� The number of memory operations is mini�
mized by using the DEC Alpha ���bit load fol�
lowed by byte extraction�

�

� The TCP port number can be found at packet
o�set
����� " ��� � �� ��� where ����� denotes
the byte at o�set ��� If loading �� bits at a
time on a little�endian machine� the formula
becomes

���
� � ��� " ���� " ��� � � � ���
With further simpli�cation we reduce this to

���
� � ��� " ��� � ��� which is exactly how
we coded Filter ��

After we write a packet �lter� our prototype
assembler produces its safety predicate using the
veri�cation�condition method presented in Section ��
The safety predicate is then proved using a theorem
prover� We currently use our own theorem prover�
which is admittedly a toy� When it gets stuck� it
requires intervention from the programmer� mainly
to learn new axioms about arithmetic
for example�
to know that r� � � � r�
 ��� The process is
easy� and because user�provided axioms are remem�
bered for future sessions� by now our system works
automatically for most practical packet �lters� With
state�of�the�art theorem proving technology we ex�
pect to be able to prove completely automatically
most arithmetic facts involved in certifying packet
�lters�
With our primitive theorem�prover we can gen�

erate safety proofs for packet �lters in about � to
�� seconds� in the cases when no user�intervention is
required�

��� Performance Comparisons

All performance measurements were done on a DEC
Alpha ����#��� with a ����MHz processor� a ��
MByte secondary cache and ���MByte main mem�
ory� running OSF#�� All measurements were per�
formed o��line using a ��������packet trace from a
busy Ethernet network at Carnegie Mellon Univer�
sity�
We measured the average per�packet run time

of the four PCC packet �lters and of function�
ally equivalent �lters implemented using alterna�
tive approaches� the BSD Packet Filter architec�
ture� Software Fault Isolation and programming in
the safe subset of Modula��� In our experiments
with Modula�� packet �lters we use the VIEW ex�
tension ��� for pointer�safe casting� The result of
the measurements are shown in Figure �� From a
per�packet latency point of view� the PCC packet
�lters outperform �lters developed using any other
considered approach� However� the PCC method
has a startup cost signi�cantly larger than the other
approaches� This cost is the proof validation time�
which is presented in Table � together with the PCC
binary size for all four �lters and maximum heap

2.0

1.5

PCC

1.0

0.5

Filter 1 Filter 2 Filter 3 Filter 4

us

0.78

1.92

0.11 0.08

1.46

0.18 0.15

0.24
0.17

0.23
0.17

1.71

0.20
0.25

0.31 0.33

BPF

SFI

M3-VIEW

Figure �� Comparison of average per�packet run
time�

space used for validation� The maximum depth of
the stack during validation was under � Kbytes�

Packet Filter � � � �
Instructions � �� �� ��
Binary Size
bytes� ��� ��� ���� ���
Validation Time
�s� ��� ���� ���� ����
Cost Space
KB� ��� ��� ���� ����

Table �� Proof size and validation cost for PCC
packet �lters�

Despite the relatively high validation cost� the
run�time bene�ts of PCC packet �lters are large
enough to amortize the startup cost after process�
ing a reasonable number of packets� Figure � shows
the overall running time� including startup cost� as a
function of the number of packets processed� for Fil�
ter �� In this particular case� the cost of proof valida�
tion is amortized after ���� packets when compared
to the BPF version of the �lter� after ����� packets
when compared to the Modula�� version and after
������ packets when compared to the SFI packet �l�
ter� Note that at the time we collected the packet
trace used for the experiments we counted about
���� Ethernet packets per second on the average�
We proceed now to describe in more detail each

considered approach focusing on how it relates to
PCC from the safety point of view� and how we set
up the performance measurements�

The standard way to ensure safe execution of
packet �lters is to interpret the �lter and perform
extensive run�time checks� This approach is best ex�
empli�ed by the BSD Packet Filter architecture �����
commonly referred to as BPF� In the BPF approach
the �lter is encoded in a restricted accumulator�

��

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

m
s

thousands of packets

BPF
M3-VIEW

SFI
PCC

Figure �� Startup cost amortization for Filter ��

based language� According to the BPF semantics�
a �lter that attempts to read outside the packet or
the scratch memory� or to write outside the scratch
memory� is terminated and the packet rejected�
The BPF interpreter makes a simple static check

of the packet �lter code to verify that all instruc�
tion codes are valid and all branches are forward
and within code limits� We measured this one�time
overhead to be a few microseconds� which is negligi�
ble� BPF packet �lters� however� are about �� times
slower than our PCC �lters� In the PCC approach
all checks are moved to the validation stage� allowing
for much faster execution�
In order to collect data for the BPF packet �lters�

we extracted the BPF interpreter as implemented by
the OSF#� kernel and compiled it as a user library�
It is possible� of course� to eliminate the need for

interpretation� For example� we could replace the
packet��lter interpreter with a compiler� This ap�
proach is taken by several researchers ���� ���� The
problem here is the startup cost and complexity of
compilation� especially if serious optimizations are
performed�

Another approach to safe code execution is Soft�
ware Fault Isolation
SFI� ����� SFI is an inexpensive
method for parsing binaries and inserting run�time
checks on memory operations� There are many �a�
vors of SFI depending on the desired level of memory
safety� If the entire code runs in a single protection
domain whose size is a power of �� and if only mem�
ory writes are checked� then the run�time cost of
SFI is relatively small� If� on the other hand� the
untrusted code interacts frequently with the code
consumer or other untrusted components residing in
di�erent protection domains and the read operations
must be checked also� the overhead of the run�time
checks can amount to �� ����� A more serious dis�

advantage of SFI is that it can only ensure memory
safety� We believe that this level of safety is not
enough in general� and that it is important to be
able to check abstraction boundaries and represen�
tation invariants� as shown by the resource access
example in Section ��
In order to accommodate SFI for packet �lters�

we allowed some concessions to the packet �lter se�
mantics� For example� we assumed that the kernel
allocates the packets on a �����byte boundary� Fur�
thermore� we assume that the �lter can safely access
the entire segment of ���� bytes� independently of
the packet size� Note that the BPF packet �lter se�
mantics� which we followed for all other experiments�
speci�es that a �lter should be terminated if it tries
to access beyond the packet boundary� This means
that some working packet �lters in the BPF seman�
tics will not behave as expected in the SFI semantics
for packet �lters� and vice�versa�
One common way of performing SFI is at the code

producer site� usually as part of the code�generation
phase in a compiler� In this case� the code consumer
performs a load�time checking that SFI was done
correctly� The load�time SFI validator is reportedly
simple if it must deal only with binaries for which
run�time checks have been inserted on every poten�
tially dangerous memory operation ����� On the
other hand� in the case where the validator must
accept binaries for which the number of run�time
checks has been optimized through program analy�
sis� the validator itself has to redo the analysis that
led to the optimization� This means a more com�
plex and slower validation� and in fact such an SFI
validator does not presently exist�
We inserted run�time checks for the memory op�

erations in the assembly language packet �lters im�
plemented for the PCC experiment� This process
can be done by a simple and easy�to�trust imple�
mentation of SFI� In our experiments� PCC packet
�lters run about �� faster than SFI �lters�
As part of our SFI experiment� we produced

safety proofs attesting that the resulting SFI packet
�lter binaries are safe with respect to the packet �l�
ter safety policy� We achieve the same e�ect as an
SFI load�time validator but using the universal type�
checking algorithm and a few application�dependent
proof rules� The precondition for this experiment
says that it is safe to read from any aligned ad�
dress that is in the same �����byte segment with
the packet start address� Proof sizes and validation
times are very similar to those for plain PCC pack�
ets�

Another approach to safe code is to use a type�
safe programming language� This approach is taken

��

by the SPIN extensible operating system ���� and
the language used is Modula�� ���� extended with
pointer�safe casting
VIEW�� SPIN allows applica�
tions to install extensions in the kernel but only
if they are written in the safe subset of Modula�
�� The extensions are compiled by a trusted com�
piler and the resulting executable code is then be�
lieved to be safe
at least according to the Modula��
model of safety�� Note that such extensions written
in Modula�� are intrinsically safe� as anyone who be�
lieves in the safety of Modula�� can check their com�
pliance with Modula�� syntactic and typing rules�
We believe that encoding kernel extensions as

PCC binaries instead of Modula�� source code can
provide important bene�ts� One such bene�t is the
increased �exibility for extension writers because
any native code extension can be accepted� inde�
pendent of the original source language or even the
compiler used� as long as a valid safety proof accom�
panies it� Another potential bene�t is overcoming
the limitations of the Modula�� safety model� the
PCC safety proof should be able to express proper�
ties such as disciplined use of locks or array bounds
compliance with no need for run�time checks�
We wrote the four packet �lters in the safe sub�

set of Modula�� and compiled them with the ver�
sion ��� of the DEC SRC compiler extended with
the VIEW operation ����� VIEW is used to safely
cast the packet �lter to an array of aligned ���bit
words allowing fewer memory operation for access�
ing packet �elds� In contrast� in plain Modula�� the
packet �elds must be loaded a byte at a time� and
a safety bounds check is performed for each such
operation� The compiler tries to eliminate some of
these checks statically but it is not very successful
for packet �lters� The main reason is that a criti�
cal piece of information� the fact that packets are at
least �� bytes long� cannot be communicated to the
compiler through the Modula�� type system�
We measured a �� improvement in the Modula�

� packet �lter performance when using VIEW� Sim�
ilar performance improvements over the DEC SRC
Modula�� compiler have been reported ���� for the
more recent Vortex compiler� However� since we
have not conducted any experiments with the Vor�
tex compiler on our packet �lters� it is not clear what
kind of improvements we would realize in practice�
In an alternate implementation of untrusted code

certi�cation using Modula��� the source code is com�
piled by a trusted and secure compiler that signs the
executable for future use� Validation then means
cryptographic signature checking and like in the
PCC approach there is no run�time cost associated
with it� We do not have a complete implementa�

tion of such a cryptographic validation� so we do not
know exactly how large is the startup cost for the
digital signature approach� It is likely however that
a good implementation of digital signatures would
achieve faster validation and signi�cantly faster gen�
eration of certi�cates� The essential drawback of
cryptographic techniques over PCC is that valida�
tion establishes only a trusted origin of the code and
not its absolute safety relative to the safety policy�
In particular� a digital signature can be ascribed to
an unsafe program just as easily as to a safe one�
Also� the cost of managing and transmitting encryp�
tion keys is not incurred by PCC�

We should mention here one more approach to
safe code execution� although we do not have an
actual quantitative comparison� The Java Virtual
Machine ���� is a proposed solution to safe interac�
tion of distributed� untrusted agents� Mobile code
is encoded in the Java Virtual Machine Language

also referred to as Java Bytecode�� which is basi�
cally a safe low�level imperative language� Safety is
achieved through a combination of static typecheck�
ing and run�time checking�
However� the Java Bytecode safety model is rel�

atively limited as a result of limitations of the type
system� For example the Java Bytecode type infor�
mation encoded in the instruction codes can only
express a few basic abstract types
e�g�� integers�
objects� and has no provisions for expressing safety
policies like the one for the resource access exam�
ple in Section �� Also� invariants involving array
bounds compliance cannot be expressed in the Java
Bytecode type system and must be checked at run
time�
Although Java Bytecode is a low�level language�

it still requires substantial processing before it can
be executed on a general�purpose processor� In con�
trast� PCC segregates the safety proof from the pro�
gram code� allowing for the code portion to be en�
coded in a variety of languages� including native
code� without any safety loss�

	 Practical Problems and Future Work

In order to create a safety proof� the code producer
must prove a predicate in �rst�order logic� In gen�
eral� this problem is undecidable� However� as we
mentioned in Section �� the code producer can re�
sort to �extra� run�time checks inserted in strategic
locations� which have the tendency to simplify the
certi�cation�
Fortunately� in the packet��lter experiments� the

certi�cation process is nearly automatic� and we

��

have not been forced to insert any extra run�time
checks into the code� In fact� we �nd that safety
predicates for packet �lters are fairly easy handled
by existing theorem�proving technology�

One of the simpli�cations in the packet �lters is
to restrict programs so that they do not contain
loops� Although the general framework presented
in this paper is easily extended to accommodate
loops ���� this introduces a number of complications�
One experiment we conducted involves an IP�header
checksum routine� which is hand�coded in �� DEC
Alpha instructions� The core loop contains � instruc�
tions� and is optimized by computing the ���bit IP
checksum using ���bit additions followed by a fold�
ing operation� The resulting PCC binary for this
routine is� as expected� quite fast� beating the stan�
dard C version in the OSF#� kernel by a factor of
two� The PCC binary itself is ���� bytes in size and
proof validation takes ��� milliseconds�
This experiment brought to light several com�

plications� For example� the standard approach of
verifying loops using Floyd�style veri�cation condi�
tions involves introducing loop invariants explicitly�
which is a challenge for any theorem�proving tech�
nology and ofter requires user intervention� In fact�
for general assembly�language programs this repre�
sents the most important problem to be solved� as
it is the main obstacle in automating the genera�
tion of proofs� Since this is beyond the capabilities
of our system� we are forced to write the invariants
out by hand� This also means that the native code
must be accompanied by a loop invariant for every
loop� Thus� the PCC binary contains a mapping be�
tween each loop and its invariant� Our convention is
to have the PCC binary contain a table that maps
each backward�branch target to a loop invariant�

Besides the problem of how to generate the
proofs� there is also the matter of their size� In prin�
ciple� the proofs can be exponentially large
in the
size of the program�� This has not been a prob�
lem for any of the examples we have tried thus far�
however� The blowup would tend to occur in pro�
grams that contain long sequences of conditionals�
with no intervening loops� Perhaps we have not yet
seen the problem in a serious way because such pro�
grams tend to be hard for humans to understand�
and we are writing the programs by hand� But as
a general matter� the size of the PCC binaries is
an issue that must be addressed carefully� We have
implemented several optimizations in the represen�
tation of the proofs� and much more is possible here�
But ultimately� we need more practical experience to
know if this is a serious obstacle for PCC in practice�
For programs with loops� the loop invariants

break a program with cycles into a set of acyclic
code fragments� We treat each code fragment as a
separate program� using the invariants as precon�
ditions for each� This has the bene�cial e�ect of
partitioning the safety predicate and its proof into
smaller pieces� and overall tends to reduce the size
of the proof dramatically� For this reason� even for
sections of programs that do not contain loops� it
may be bene�cial to introduce invariants� as a way
of controlling the growth of the PCC binaries�

In addition to developing better certi�cation
technology� we see several other interesting direc�
tions for further research� One possibility that we
intend to explore is the application of PCC to more
dynamic properties� such as resource�usage guaran�
tees� One example would be to certify that spe�
ci�c synchronization locks are always released prior
to some action� The framework we have presented
in this paper is already expressive enough to de�ne
such safety policies� and so what remains now is to
try some experiments�
Another possibility is to allow the consumer and

producer to �negotiate� a safety policy at run time�
This would work by allowing the producer to send
an encoding of a proposed safety policy
including
the VC�generation rules� proof rules� and precon�
ditions� to the consumer� If the consumer deter�
mines that the proposed policy implies some basic
notion of safety� then it can allow the producer to
produce PCC binaries using the new policy� This
might be useful in distributed systems� in which one
agent wants to de�ne a language and then transmit
to other agents code written in that language�
Finally� we believe there would be advantages

to starting with a safe programming language and
then implementing a certifying compiler that pro�
duces PCC binaries as target programs� For the
safety properties that are implied by the source lan�
guage� construction of the proofs is� in principle� a
matter of having the compiler prove the correctness
of the translation to target code� We have already
experimented with a toy compiler of this sort for a
small type�safe programming language� and hope to
expand on this in the near future�

 Conclusions

We have described proof�carrying code� a mechanism
that allows a kernel or server to interact safely with
binaries supplied by an untrusted source� PCC does
not incur any run�time overhead for the kernel� In�
stead� the code producer is required to generate a
formal proof that the code obeys the safety policy�

��

The kernel can easily check the proofs for validity�
after which it is absolutely certain that the code re�
spects the safety policy� Furthermore� PCC binaries
are completely tamper�proof� any attempt to alter
either the native code or safety proof in a PCC bi�
nary is either detected or harmless� Our experiments
with network packet �lters show that PCC can lead
to signi�cant performance advantages over existing
approaches to safe code� including code�editing tech�
niques such as Software Fault Isolation�
Proof�carrying code has the potential to free the

system designer from relying on run�time checking
as the sole means of ensuring safety� Traditionally�
system designers have always viewed safety simply
in terms of memory protection� achieved through the
use of rather expensive run�time mechanisms such as
hardware�enforced memory protection and extensive
run�time checking of data� By being limited to mem�
ory protection and run�time checking� the designer
must impose substantial restrictions on the structure
and implementation of the entire system� for exam�
ple by requiring the use of a restricted application�
kernel interaction model
such as a �xed system call
or application�program interface��
Proof�carrying code� on the other hand� allows

the safety policy to be de�ned by the kernel designer
and then certi�ed by each application� Not only does
this provide greater �exibility for designers of both
the system and applications� but also allows safety
policies to be used that are more abstract and �ne�
grained than memory protection� We believe that
this has the potential to lead to great improvements
in the robustness and end�to�end performance of sys�
tems�

� Final Thoughts

The inspiration for proof�carrying code comes from
the realm of static type systems� especially as em�
bodied by the language Standard ML
SML�� In
the formal de�nition of SML ����� a formal theorem
guarantees the safety of any type�correct SML pro�
gram� for a rigorously de�ned notion of safety� There
are� of course� many other type�safe programming
languages� for example Modula�� ���� and Java �����
but the use of mathematical formalism sets SML
apart from the these languages� and as a practical
matter this rigor provides the basic conceptual and
technical foundations that we need to create check�
able proofs�
With type�safe languages like SML in mind� we

can get an intuitive idea about how proof�carrying
code works� Consider a compiler for SML� Agent A
writes an SML program and compiles it to a native�

code target program� If we then throw away the
source program� how can we later convince an agent
B that the target program is safe$
We are assum�
ing that agent B does not trust agent A�� One way
to do this is to have the compiler prove that the tar�
get code correctly corresponds to the source code��

Now� as it turns out� in the type theory of SML� not
only can such a proof be written out formally� but in
fact it can be written in a typed language with the
property that any well�typed proof is guaranteed to
be valid�

Proof�carrying code is thus an application of
ideas from programming�language theory� in this
case used for de�ning notions of safety that are use�
ful for operating systems� and �exible enough to ac�
commodate both high�level and low�level languages�
With the growth of interest in highly distributed
computing� web computing� and extensible kernels�
it seems clear to us that ideas from programming
languages are destined to become increasingly criti�
cal for robust and good�performing systems�

� Acknowledgements

We thank Robert Harper� Brian Noble� Daniel Jack�
son� Edo Biagioni� Greg Morrisett� Scott Draves�
Chris Colby� Martin Abadi and Dave Detlefs for
reading previous versions of this paper and for sug�
gesting many improvements� We also thank Charles
Garrett� Brian Bershad� Wilson Hsieh for suggest�
ing many improvements to the methodology for the
Modula�� performance measurements� Finally� we
thank the anonymous reviewers for their many sug�
gestions for improving this paper� In particular we
thank our shepherd� Jay Lepreau� who also sug�
gested the PCC name�

References

��� Bershad� B�� Savage� S�� Pardyak� P��

Sirer� E� G�� Becker� D�� Fiuczynski� M��

Chambers� C�� and Eggers� S� Extensibil�
ity� safety and performance in the SPIN operat�
ing system� In Symposium on Operating System
Principles
Dec� ������ pp� ���%����

��� Boyer� R� S�� and Yu� Y� Automated proofs
of object code for a widely used microprocessor�
J� ACM ��� �
Jan� ������ ���%����

�This is essentially the same as having a compiler translate the

types as well as the code� so that the target program will have

types that can be checked� In fact� this approach to compiling is

taken by the SML
TIL compiler �����

��

��� Clutterbuck� D�� and Carr�e� B� The ver�
i�cation of low�level code� IEEE Software En�
gineering Journal �� �
May ������ ��%����

��� Constable� R� L�� Allen� S� F�� Bromley�
H� M�� Cleaveland� W� R�� Cremer� J� F��

Harper� R� W�� Howe� D� J�� Knoblock�

T� B�� Mendler� N� P�� Panangaden� P��

Sasaki� J� T�� and Smith� S� F� Implement�
ing Mathematics with the Nuprl Proof Develop�
ment System� Prentice�Hall� �����

��� Dijkstra� E� W� Guarded commands� nonde�
terminancy and formal derivation of programs�
Communications of the ACM �

������ ���%
����

��� Floyd� R� W� Assigning meanings to pro�
grams� In Mathematical Aspects of Computer
Science� J� T� Schwartz� Ed� American Mathe�
matical Society� ����� pp� ��%���

��� Harper� R�� Honsell� F�� and Plotkin�

G� A framework for de�ning logics� Journal of
the Association for Computing Machinery ��� �

Jan� ������ ���%����

��� Hoare� C� A� R� An axiomatic basis for com�
puter programming� Communications of the
ACM �

������ ���%����

��� Hsieh� W� C�� Fiuczynski� M� E�� Gar�

rett� C�� Savage� S�� Becker� D�� and

Bershad� B� N� Language support for extensi�
ble operating systems� In The Inaugural Work�
shop on Compiler Support for Systems Software

Feb� ������ pp� ���%����

���� Lee� P�� and Leone� M� Optimizing ML with
run�time code generation� In PLDI��� Confer�
ence on Programming Language Design and Im�
plementation
May ������ pp� ���%����

���� Martin�L�of� P� A theory of types� Techni�
cal Report ��%�� Department of Mathematics�
University of Stockholm� �����

���� McCanne� S� The Berkeley Packet Fil�
ter man page� BPF distribution available at
ftp
��ftp�ee�lbl�gov� May �����

���� McCanne� S�� and Jacobson� V� The BSD
packet �lter� A new architecture for user�level
packet capture� In The Winter ���� USENIX
Conference
Jan� ������ USENIX Association�
pp� ���%����

���� Milner� R�� Tofte� M�� and Harper� R�

The De�nition of Standard ML� MIT Press�
Cambridge� Massachusetts� �����

���� Mogul� J� C�� Rashid� R� F�� and Accetta�

M� J� The packet �lter� An e�cient mechanism
for user�level network code� In ACM Symposium
on Operating Systems Principles
Nov� ������
ACM Press� pp� ��%��� An updated version is
available as DEC WRL Research Report ��#��

���� Necula� G� C�� and Lee� P� Proof�carrying
code� Technical Report CMU�CS�������� Com�
puter Science Department� Carnegie Mellon
University� Dec� ����� Also appeared as FOX
memorandum CMU�CS�FOX�������

���� Nelson� G� Systems Programming with
MODULA��� Prentice�Hall� �����

���� Sirer� E� G�� Savage� S�� Pardyak� P�� De�
Fouw� G� P�� and Bershad� B� N� Writing
an operating system with Modula��� In The
Inaugural Workshop on Compiler Support for
Systems Software
Feb� ������ pp� ���%����

���� Sites� R� L� Alpha Architecture Reference
Manual� Digital Press� �����

���� Sun Microsystems� The Java language spec�
i�cation� Available as
ftp
��ftp�javasoft�com�docs�javaspec�ps�zip�
�����

���� Sun Microsystems� The Java Virtual Ma�
chine speci�cation� Available as
ftp
��ftp�javasoft�com�docs�vmspec�ps�zip�
�����

���� Tarditi� D�� Morrisett� J� G�� Cheng� P��

Stone� C�� Harper� R�� and Lee� P� TIL�
A type�directed optimizing compiler for ML�
In PLDI��� Conference on Programming Lan�
guage Design and Implementation
May ������
pp� ���%����

���� Wahbe� R�� Lucco� S�� Anderson� T� E��

and Graham� S� L� E�cient software�based
fault isolation� In ��th ACM Symposium on Op�
erating Systems Principles
Dec� ������ ACM�
pp� ���%����

���� Wallach� D� A�� Engler� D�� and

Kaashoek� M� F� ASHs � Application�
speci�c handlers for high�performance messag�
ing� In ACM SIGCOMM���
Oct� ������
vol� ��� ACM�

��

