

Today's Class

- Welcome!
- Goals for the course
- Topics, what interests you?
- Introduction to security research
- Components of your grade
- Legal and ethical concerns

Who am I?

J. Alex Halderman CSE Prof Princeton PhD

Email: jhalderm@ Office: 4717 CSE

Hours: TuTh 3:30-4:30 or by appointment

Mobile: 609-558-2312

My Work – DRM SONY The South State of the South S

Goals for this Course

- Gain hands-on experience **Building secure systems** Evaluating system security
- Prepare for research Computer security subfield Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 hax0r, but an ethical one!

The security mindset, thinking like an attacker, reasoning about risk, research ethics
Symmetric ciphers, hash functions, message authentication codes, pseudorandom generators Key exchange, public-key cryptography, key management, the SSL protocol

Software Security
Exploitable bugs: buffer overflows and other common vulnerabilities – attacks and defenses Malware: viruses, spyware, rootkits – operation and detection Automated security testing and tools for writing secure code Virtualization, sandboxing, and OS-level defenses

Web Security

The browser security model

Web site attacks and defenses: cross-site scripting, SQL injection, cross-site reference forgery
Internet crime: spam, phishing, botnets – technical and nontechnical responses

Network Security
Network protocols security: TCP and DNS – attacks and defenses
Policing packets: Firewalls, VPNs, intrusion detection
Denial of service attacks and defenses Data privacy, anonymity, censorship, surveillance

Advanced Topics

Hardware security – attacks and defenses Trusted computing and digital rights management Electronic voting – vulnerabilities, cryptographic voting protocols

Getting to Know You

- Who are you?
- What topics interest you?
- What would you like to learn in this course?

What is Security Research?

- "The study of how systems behave in the presence of an adversary*."
- * An intelligence that actively tries to cause the system to misbehave.

What's the Difference?

Why is Security its own Area of CS?

Who does Security Research?

- Academia
- Industry
- Military
- Hobbyists
- Bad guys...

High-Level Approaches Attacks Defenses

Why Study Attacks?

- Identify flaws so they can be fixed
- Pressure vendors to be more careful
- Learn about new classes of threats
 - Motivate new research on defenses
 - Determine what we need to defend against
 - Help designers build better threat models
 - Help users more accurately evaluate risk
- Identify false design assumptions
 Improve models used for proof of security

Thinking Like an Attacker

- Look for weakest links easiest to attack
 - Insider attacks, social engineering
- Think outside the box not constrained by system designer's worldview
 - Side-channel attacks (TEMPEST, power analysis)
- Identify assumptions that security depends on – are they false?
 - e.g. cold-boot attacks

Practice thinking like an attacker: For every system you interact with think about what it means for it to be secure, and image how it could be exploited by an attacker.

Exercises

Breaking into the CS building

Exercises

Stealing an election

Exercises

Stealing my password

Exercises

• What are some security systems you interact with in everyday life?

Thinking Like a Defender

- Security policy
 - What properties are we trying to enforce?
- Threat model
 - What kind of attack are we trying to prevent?
 - Who are the attackers? Capabilities? Motivations?
- Risk assessment
 - What will successful attacks cost us?
 - How likely?
- Countermeasures
 - Costs vs. benefits?
 - Technical vs. nontechnical?

Challenge is to think rationally and igorously about risks Controlled paranoia.

Exercises

Designing a state lottery system

Exercises

Using a credit card safely

Exercises

Should you lock your door?

Spotting Security Snake-Oil?

- Kerckhoffs' principle
 Should be secure even if everything about the design is public—except for the secret keys
- Roll-Your-Own Encryption
 Just because you can't break it doesn't mean it's hard to break look for AES, SHA-1, etc.
- References to Applied Cryptography
 If you need to look it up in a cryptography book, you probably should be consulting a cryptographer

Recall Course Goals

- Gain hands-on experience Building secure systems Evaluating system security
- Prepare for research
 Computer security subfield
 Security-related issues in other areas
- Generally, improve research and communication skills
- Learn to be a 1337 haxor, but an ethical one!

Class Participation (5%)

- 1-2 required papers for discussion in each sessions (other readings optional)
- Come prepared to contribute!
- Full points for speaking up and contributing substantial ideas
- Lose points for being silent, frequently missing class, browsing the web, etc.

Paper Responses (15%)

- Brief written response to each required paper (should be < 350 words/paper):
 - (1) state the problem the paper is trying to solve
 - (2) summarize its main contributions
 - (3) evaluate its strengths and weaknesses*
 - (4) suggest at least two interesting open problems on related topics*
 - (5) tell me if anything was too difficult to understand*
- Due by email before class
- Graded by statistical sampling
- Put "[reading588]" in subject line

Attack Presentation (30%)

- With a partner, choose a specific attack from recent research and implement a demonstration
- Give a 15 minute presentation:
 (1) describe the attack
 (2) talk about how you implemented it, give a demo
 (3) discuss possible defenses
- Course schedule lists topics and dates
- Each group send me top 3 choices by Friday 1/19,
 I'll tell you your assignment on Monday

Research Project (50%)

In groups, investigate a new attack or defense Should have potential to become a marketable product or conference paper, but not necessarily by the end of the term

Components (more detail to follow):

- Project proposal (5%)
- Project checkpoint (5%)
- Conference-style presentation in class (15%)
- Final conference-style report (25%)

Communication

Course Web Site

http://www.eecs.umich.edu/courses/eecs588/ announcements, schedule, readings

Email Me

jhalderm@eecs.umich.edu suggestions, questions, concerns

Law and Ethics

- Don't be evil!
 - Ethics requires you to refrain from doing harm
 - Always respect privacy and property rights
- Otherwise <u>you will fail the course</u>
- Federal and state laws criminalize computer intrusion and wiretapping
 - e.g. Computer Fraud and Abuse Act (CFAA)
 - You can be sued or go to jail
- University policies prohibit tampering with campus systems
 - You can be disciplined, even expelled

Next Week

Crash-course in cryptography:
Building blocks you need to get started

No required reading until January 21

Find a partner and pick topics for your attack presentation

Start thinking about your course project; Form a group, proposal due February 19