

Law and Ethics

- Don't be evil!
 - Ethics requires you to refrain from doing harm
 - Always respect privacy and property rights
 - Otherwise you will fail the course
- Federal and state laws criminalize computer intrusion and wiretapping
 - e.g. Computer Fraud and Abuse Act (CFAA)
 - You can be sued or go to jail
- University policies prohibit tampering with campus systems
 - You can be disciplined, even expelled

Attack Presentation

- With a partner, choose a specific attack from recent research and implement a demonstration (Find a partner: Forum on ctools)
- Give a 15 minute presentation
 (1) describe the attack
 - (2) talk about how you implemented it, give a demo (3) discuss possible defenses
- Course schedule lists topics and dates Extra credit: Bonus challenges
- Each group send me top 3 choices by Friday 1/19,

Today's Class

- The Cryptographer's View
- Hash Functions
- Message-Authentication Codes
- Generating Random Numbers (BREAK)
- Block Ciphers

Practical Random Oracles?

Suppose domain is size 2256...

Pseudorandom Functions (PRFs)

(A function randomly chosen from a *family* of PRFs is computationally indistinguishable from a Random Oracle)

≈ Message Authentication Codes (MACs)

Pseudorandom Permutations

≈ Symmetric Ciphers

Ingredients for a Secure Channel

Confidentiality

Attacker can't see the message Symmetric Ciphers

Integrity

Attacker can't modify the message Message Authentication Codes (MACs)

Hash Functions

 Ideal: Random mapping from any input to a set of output

- Requirements:
 - Preimage resistant (one-way)
 - Second-preimage resistant
 - Collision-resistant
- Caution! Real hashes don't match our ideal

MD₅ Hash Function

- Designed in 1992 by Ron Rivest
 - 128-bit output
 - 128-bit internal state
 - 128-bit block size
- Like most hash functions, uses block-chaining construction

MD₅ is Unsafe – Never use it!

- First flaws in 1996;
 by 2007, researchers demonstrated a collision
- Chaining allows chosen prefix attack
- Dec. 2008: others used this to fake SSL certificates (cluster of 200 PS3s)

MD₅ Collision

d131ddo2c5e6eec4693d9ao698aff95c 2fcab58712467eab4oo4583eb8fb7f89 55ad34o609f4b3ox83e488832571415a 085125e8f7cdc99fd91ddf280373C5b d8823e3156348f5bae6dacd436c919c6 dd53e2b487dao3fdo2396306d248cdao e99f33420f577ee8ce54b6708oa80d1e c69821bcb6a8839396f9652b6ff7za7o

d131ddo2c5e6eec4693d9ao698aff95c 2fcab5o712467eab4oo4583eb8fb7f89 55ad34o609f4b3ox883e4888325f1415a 085125e8ff7cdc99fd9adbd7280373c5b d8823e3156348f5bae6dacd436c919c6 dd53e2348f7dao3fdo23963o6d248cdao e99f33420f577ee8ce54b67o8ox80d1e c69821bcb688839396f965ab6ff7za7o

Both of these blocks hash to 79054025255fb1a26e4bc422aef54eb4

SHA Hash Functions

- SHA-1 standardized by NIST in 1995
 - 160-bit output and internal state
 - 512-bit block size
- SHA-256 extension published in 2001
 - 256-bit output and internal state
 - 512-bit block size
- SHA-512 extension published in 2001
 - 512-bit output and internal state
 - 1024-bit block size

Tricky! Length Extension Attacks

The *i*-th internal state (IHV) is equivalent to the hash of the first *i* blocks.

Given hash of secret *x*, trivial to find hash of *x* || *m* for many values of *m* (slight issues of blocking and padding).

MD5 and SHA family all vulnerable!

Is SHA-1 Safe?

- Significant cryptanalysis since 2005
- Improved attacks show complexity of finding a collision < 2⁶³ (should be 2⁸⁰ – why?)
- Attacks only get better...
- Don't use SHA-1. Use SHA-256 until we have something better.

Message Authentication Codes

- Prevents tempering with messages.
 Like a family of pseudorandom functions, with a key to select among them
 - Inputs: Fixed sized key K Arbitrary length message m
 - Output: Fixed sized MAC code, MAC(K, m)
- Security properties of a Hash on both inputs

Construction: HMAC

Given a hash function H:

 $\mathsf{HMAC}(K,m) = \mathsf{H}((K \oplus \mathsf{pad1}) || \mathsf{H}(K \oplus \mathsf{pad2} || m))$ for constants $\mathsf{pad1}$ and $\mathsf{pad2}$

Provides nice provable security properties

What Should You Use?

- What should you use when you need a hash function?
 - Conservative answer: Use HMAC-SHA256
 - Avoids length extension attacks

Generating Random Numbers

- What's wrong with srand() and rand()?
- Why not use a secure hash?
 - "Cryptographic Pseudorandom Number Generator" (CPRNG)
- Tricky details...
 - Seeding with true randomness ("entropy")
 - Forward secrecy
- Most OSes do the hard work for you
 - On Linux, use /dev/random and /dev/urandom

One-Time Pads

Provably secure encryption...

... that often fails in practice.

Block Ciphers

- Ideal block cipher:
 Like a family of pseudorandom permutations with a key to select among them
- Unlike hashes and MACs, ciphers are invertible – encryption and decryption functions

DES—Data Encryption Standard

- US Government standard (1976)
- Designed by IBM Tweaked by NSA
- 56-bit key
- 64-bit blocks
- 16 rounds
- Key schedule function generates 16 round keys:

• Feistel network • common block cipher construction • makes encryption and decryption symmetric—just reverse order of round keys • Each round uses the same Feistel function F (by itself a weak block cipher)

DES Feistel Function

- In each round:
 - Expansion Permutation E
 32 → 48 bits
 - S-boxes ("substitution") replace 6-bit values
 - Fixed Permutation P rearrange the 32 bits

DES is Unsafe - Don't Use It!

- Design has known weaknesses
- 56-bit key way too short
- EFF's "Deep Crack" machine can brute force in 56 hours using FPGAs (\$250k in 1998, far cheaper today)
- 3-DES?

AES—Advanced Encryption Standard

- Standardized by NIST in 2001 following open design competition (a.k.a. Rijndael)
- 128-, 192-, or 256-bit key
- 128-bit blocks
- 10, 12, or 14 rounds
- Not a Feistel-network construction

How Safe is AES?

- Known attacks against 128-bit AES if reduced to 7 rounds (instead of 10)
- 128-bit AES very widely used, though NSA requires 192- or 256-bit keys for SECRET and TOP SECRET data
- What should you use?
 - Conservative answer: Use 256-bit AES

Thursday

Essential Crypto II: Cipher Modes Secure Channels Key Exchange Public-Key Crypto Establishing Trust