Essential
Cryptography Il

EECS 588: Computer and Network Security
January 14, 2010

Cipher Modes

How do we encrypt more than one block?
Some definitions:

P;—i-th plaintext block

C,— i-th ciphertext block

E() — encryption function

D() — decryption function

K —encryption key

What's Wrong with ECB?

Today’s Class

1/14/2010

Cipher Modes

Building a Secure Channel
Implementations

(BREAK)

Diffie-Hellman Key Exchange
RSA Encryption and Signing
Establishing Trust

Cipher Modes: ECB

“Electronic codebook” (ECB) mode
C:=EK,P) fori=1,..k

Most “natural” construction
Never use ECB

Cipher Modes: CBC

ECB Other Modes

Same plaintext block always encrypts to same ciphertext block.

Don’t use ECB mode.

“Cipher-Block Chaining” (CBC) mode
C=EK P&®C,) fori=z1, ..,k

Is CBC appropriate for

Cipher Mod es: CBC encrypting an online movie?

1/14/2010

Cipher Modes: CTR

“Cipher-Block Chaining” (CBC) mode
C=EK P®C,) fori=1, .. k

Random
“Initialization
Vector”

What if you reuse the IV? Bad.

Building a Secure Channel

“Counter” (CTR) mode

K;:=E(K, Nonce || i)

C:=P,®K;

fori=1, ..., k

= Stream cipher construction — like OTP
= Plaintext never passes through £

= Don't need to pad the message

= Allows parallelization and seeking

= Never reuse same K+Nonce (like OTP)

Building a Secure Channel

Never reuse

Session Key K % 4 Session Key K

/[Initialization (Both Parties)

Separate KeySendEnc := HMAC-SHA256(K, “Enc A-to-B")

(
keys for KeyRecvEnc = HMAC-SHA256(K, “Enc B-to-A”)
each KeySendAuth := HMAC-SHA256(K, “Auth A-to-B")
function KeyRecvAuth := HMAC-SHA256(K, “Auth B-to-A")

if Bob then
swap(KeySendEnc, KeyRecvEnc)
swap(KeySendAuth, KeyRecvAuth)
MsgCntSend :=o0
MsgCntRecv =0

Never reuse

Encrypt First or Auth First?

Y
/| Sender

MsgCntSend := MsgCntSend + 1

i =MsgCntSend

a:= HMAC-SHA256(KeySendAuth,
il len(m) || m)

t:=al|lm

K := KeySendEnc

/[tolength of t:

MsgKey = E(K, i | o) | ECK, i [|)] .

Transmit(i || (t ® MsgKey))

/| Receiver

i]| t:=Receive()

K := KeyRecvEnc

/[tolengthof t:

MsgKey = E(K, i] o) | EK, /]|)] .

al|m:=t® MsgKey

a':= HMAC-SHA256(KeyRecvAuth,
il len(m) || m)

Check(a’' == a)

Check(i > MsgCntRecv)

MsgCntRecv := i

Implementations: OpenSSL

HMAC(E(msg)) or E(HMAC(msg)) ?

= Try not to implement crypto functions.
Use OpenSSL libraries if possible.
= Open source implementation

= SSL protocol plus general crypto functions
= Very fast hand-tunes assembly language

OpenSSL on the Command Line

Hashing (a.k.a. “message digest”)
$ openssl dgst -sha256 myfile

Encryption and decryption
$ openssl enc -aes-256-cbc \
-in myfile -out myfile.enc
$ openssl enc -d -aes-256-cbc \
-in myfile.enc -out myfile

Performance tests
$ openssl speed sha
$ openssl speed aes

OpenSSL in C - Encryption

#include <openssl/evp.h>

// 256-bit AES in CBC mode with padding
void AesEncrypt(unsigned char key[32], unsigned char iv[16])

unsigned char inData[16], outData[16];
Int inlLen, outLen;
EVP_CIPHER_CTX ctx;

EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL
(unsigned char *)key, (unsigned char *)iv);

while ((inLen = fread(inData, 1, 16, stdin)) > @) {
EVP_EncryptUpdate(&ctx, outData, &outlLen, inData, inLen);
fwrite(outData, 1, outlen, stdout);

EVP_EncryptFinal_ex(&ctx, outData, &outlen);
fwrite(outData, 1, outlLen, stdout);
EVP_CIPHER_CTX_cleanup(&ctx); // zeroize the key

1/14/2010

OpenSSL in C - Authentication

#include <openssl/hmac.h>
#include <openssl/sha.h>
#include <openssl/evp.h>

unsigned char mac[SHA256_DIGEST_LENGTH];
mac = HMAC(
EVP_sha256(), // use SHA-256 hash function
(unsigned char*) key,
(unsigned long) keyNumBytes,
(unsigned char*) data,
(unsigned long) dataNumBytes,
NULL, NULL
);

Summary of Practical Advice

Don’t use MDs; avoid hash function pitfalls
Don’t use DES; avoid ECB mode
Don't use rand () and its ilk

For a hash/MAC, use HMAC-SHA256
For a block cipher, use AES-256

For randomness, use the OS’s CPRNG
For implementations, use OpenSSL

Try OpenSSL at Home

Install OpenSSL or use try it on a cluster
= Sign and encrypt a message

= Compare the speed of various functions

= Think... How does the AES implementation

compare to the speed of your Internet
connection? You hard disk? You RAM?

Use C, Python, or Perl and the OpenSSL
library to implement our secure message
passing protocol

Related Research Problems

Cryptanalysis: Ongoing work to break crypto
functions... rapid progress on hash collisions
Cryptographic function design: We
desperately need better hash functions...
NIST competition now to replace SHA
Attacks: Only beginning to understand
implications of MD5 breaks — likely enables
many major attacks

5 Minute Break

3) 01101010
FLIP IT ANDREVERSE IT. oou»mw
\ 11oei1010
% Olg:‘dull
AN -~
Ao AAO OISO A
PARANTLL AN AN DDA

|'VE_GEEN BARRED FROM SPEAKING ATT ANY MATOR

CLEAR THAT ALL My MLGORITHME WERE TUsT
THINLY DISGUISED MissY ELLSTT SONGS.

Diffie-Hellman Key Exchange

Public-Key Cryptography

Problem: With symmetric ciphers, every
sender-receiver pair must share a secret key

Question: What if we could use
different keys for encryption and decryption?

1/14/2010

Diffie-Hellman Key Exchange

Whitfield Diffie and Martin Hellman, 1976

K

Alice Passive Eavesdropper Bob

Lets Alice and Bob establish a shared secret
even if Eve is listening in

Difficulty?

Diffie-Hellman (DH) problem:
Compute g given g*and ¢ (mod p)
Best known approach: Compute x from g~
= Called the discrete logarithm (DL) problem
= No known efficient algorithm
Modular exponentiation believed to be a
one-way function
= Easy to compute
= Hard to invert

Agree on a large prime p
y V4 and primitive element g
B that generates the group Z;
Alice (p, g can be public) Bob
Chooses random
x<p (secret) a:=g“modp
Chooses random
y<p (secret)
b:=g’mod p
Calculates Calculates
k:=b*mod p k:=a’modp

Why this works:
b*=(g"y = (g") = @’ (mod p)

Attacking Diffie-Hellman

K- 2 ﬂ
) ¢ Mallory

Chooses

random x < p g
Chooses
randomv<p g’
Chooses
g random y <p
Chooses
9" random w < p
k= (g"y* k= (9"

k':=(g"y

K= (g"y

RSA

RSA in One Slide

1/14/2010

Ron Rivest, Adi Shamir, Len Adleman (1977)
Used for encryption and signatures

Based on a trapdoor function
= Easy to compute
= Hard to invert without special information

Based on apparent difficulty of factoring
large numbers

RSA for Encryption

i . Why don’t we use RSA
Publish: (1,
Store secretly: d
Encryption of m

Choose random k same size as n
c:=k®modn
Send ¢, encrypt m with AES using k
Decryption
k := c*mod n; decrypt m with AES using k

P q large random primes
n:=pq modulus
t :=(p-1)(g-1) ensures x! =1 (mod n)

e :=[smalloddvalue] public exponent
d:=1/emodt private exponent

Publickey: (n, e)
Private key: anyofp,q,t,d

Encryption: c:=m®modn
Decryption: m:=c?modn

Why? (me)d=med= m t*t = (mt)km = 1km = m (mod n)

D-H with Authentication

vy @& B
Mallory

Chooses random

x<p (secret) ai=grmodp Signu(a)

Chooses random
y<p (secret)
b:=g¢’modp Signg,(a,b)

Verifies signature Verifies signature

Calculates Calculates
k:=b*mod p k:=a"mod p

RSA for Signatures

Publish: (n, e)

Store secretly: d

Signing m
Seed a CPRNG with m and calculate
pseudorandom string s same size as n
o:=smodn

Verifying a signature on m
Recalculate s fromm
Checks=0°*modn

Establishing Trust

How do Alice and Bob learn each others’
signature verification keys?

Web of Trust
= Transitive trust among associates (e.g. PGP)

Public Key Infrastructure (PKI)

= Trusted third-party Certificate Authority (CA)
binds keys-identities (e.g. SSL)

Tuesday: Crypto Attacks (1)

Paper Responses

1/14/2010

Optional Background Reading

= Introducing SSL and Certificates using SSLeay
Hirsch. WWW Journal, Summer 1997.

Required Reading — Responses Due Before Class

= MD5 To Be Considered Harmful Someday
Kaminsky. 2004.

= MDs5 Considered Harmful Today
Sotirov, Stevens, Appelbaum, Lenstra, Molnar,
Osvik, and Weger. CCC 2008.

Brief written response to each required paper
(should be < 350 words/paper):
(1) state the problem the paper s trying to solve
(2) summarize its main contributions
(3) evaluate its strengths and weaknesses*
(4) suggest at least two interesting open problems
on related topics*
(5) tell me if anything was too difficult to understand*
Due by email before class

= Put “[reading588]” in subject line

Security Reading Group

Thursdays 12-1:30pm
Read 1 paper, get free lunch

Get on the mailing list,
http://wiki.eecs.umich.edu/secrit/

