1/7/2011

Essential
Cryptography Il

EECS 588: Computer and Network Security
January 11, 2011

Today’s Class

Cipher Modes

Building a Secure Channel
Implementations

(BREAK)

Diffie-Hellman Key Exchange
RSA Encryption and Signing
Establishing Trust

Cipher Modes

How do we encrypt more than one block?
Some definitions:

P.—i-th plaintext block
C,—i-th ciphertext block
E() — encryption function
D() — decryption function
K —encryption key

Cipher Modes: ECB

“Electronic codebook” (ECB) mode
C:=E(K,P) fori=1,..,n

|II

Most “natural” construction

Never use ECB

1/7/2011

What's Wrong with ECB?

ECB Other Modes

Same plaintext block always encrypts to same ciphertext block.

Don't use ECB mode.

Cipher Modes: CBC

"Cipher-Block Chaining” (CBC) mode
C:=EK P®C,) fori=1,..n

1/7/2011

Cipher Modes: CBC

“Cipher-Block Chaining” (CBC) mode
C=EK P®C, fori=z,..n

Random
“Initialization
Vector”

What if you reuse the IV? Bad.

Cipher Modes: CTR

“Counter” (CTR) mode
K.:=E(K, Nonce||i) fori=1,..,n
C:=P, @K,

= Stream cipher construction — like OTP
Plaintext never passes through E
Don’t need to pad the message
Allows parallelization and seeking
Never reuse same K+Nonce (like OTP)

1/7/2011

Building a Secure Channel

SessionKey K | #
Never reuse

Session Key K
Never reuse

/[Initialization (Both Parties)

Separate KeySendEnc := HMAC-SHA256(K, “Enc A-to-B")

keys for KeyRecvEnc :=HMAC-SHA256(K, “"Enc B-to-A")
each KeySendAuth := HMAC-SHA256(K, “Auth A-to-B")

function KeyRecvAuth := HMAC-SHA256(K, “Auth B-to-A")

if Bob then

swap(KeySendEnc, KeyRecvEnc)
swap(KeySendAuth, KeyRecvAuth)

MsgCntSend :=o
MsgCntRecv =0

Building a Secure Channel

/| Sender

MsgCntSend := MsgCntSend + 1

i :=MsgCntSend

a:= HMAC-SHA256(KeySendAuth,
i len(m) || m)

t:=allm

K := KeySendEnc

/[tolength of t:

MsgKey :=E(K, i || o) || E(K, i || 1) || ...

Transmit(i || (t ® MsgKey))

>

/[Receiver

i||t:=Receive()

K := KeyRecvEnc

/[tolength of t:

MsgKey :=E(K, i]| o) || E(K, i][1)]| -..

al|m:=t® MsgKey

a':= HMAC-SHA256(KeyRecvAuth,
il len(m) || m)

Check(a’ == a)

Check(i > MsgCntRecv)

MsgCntRecv := i

1/7/2011

Implementations: OpenSSL

Try not to implement crypto functions.
Use OpenSSL libraries if possible.

= Open source implementation
= SSL protocol plus general crypto functions
= Very fast hand-tuned assembly language

OpenSSL on the Command Line

Hashing (a.k.a. "message digest”)
$ openssl dgst -sha256 myfile

Encryption and decryption
$ openssl enc -aes-256-cbc \
-in myfile -out myfile.enc
$ openssl enc -d -aes-256-cbc \
-in myfile.enc -out myfile

Performance tests

$ openssl speed sha
$ openssl speed aes

1/7/2011

1/7/2011

OpenSSL in C - Authentication

#include <openssl/hmac.h>
#include <openssl/sha.h>
#include <openssl/evp.h>

unsigned char *mac;
mac = HMAC(
EVP_sha256(), // use SHA-256 hash function
(unsigned char*) key,
(unsigned long) keyNumBytes,
(unsigned char*) data,
(unsigned long) dataNumBytes,
NULL, NULL

OpenSSL in C - Encryption

#include <openssl/evp.h>

// 256-bit AES in CBC mode with padding

void AesEncrypt(unsigned char key[32], unsigned char iv[16])

{
unsigned char inData[16], outData[16];
Int inLen, outLen;
EVP_CIPHER_CTX ctx;

EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL,
(unsigned char *)key, (unsigned char *)iv);

while ((inLen = fread(inData, 1, 16, stdin)) > @) {
EVP_EncryptUpdate(&ctx, outData, &outlLen, inData, inLen);
fwrite(outData, 1, outlLen, stdout);

EVP_EncryptFinal_ex(&ctx, outData, &outLen);
fwrite(outData, 1, outlLen, stdout);
EVP_CIPHER_CTX_cleanup(&ctx); // zeroize the key

1/7/2011

Try OpenSSL at Home

Install OpenSSL or use try it on a cluster
= Sign and encrypt a message
= Compare the speed of various functions

= Think... How does the AES implementation
compare to the speed of your Internet
connection? Your hard disk? Your RAM?

Use C, Python, or Perl and the OpenSSL
library to implement our secure message
passing protocol

Summary of Practical Advice

Don’t use MDg; avoid hash function pitfalls
Don’t use DES; avoid ECB mode
Don’t use rand () and its ilk

For a hash/MAC, use HMAC-SHA256
For a block cipher, use AES-256

For randomness, use the OS’s CPRNG
Forimplementations, use OpenSSL

1/7/2011

Related Research Problems

Cryptanalysis: Ongoing work to break crypto
functions... rapid progress on hash collisions
Cryptographic function design: We badly need
better hash functions... NIST competition
now to replace SHA

Attacks: Only beginning to understand
implications of MDg5 breaks — likely enables
many major attacks

5 Minute Break

I'M SURE YOUVE HEARD ALL ABOUT THIS YES, IT'S TRUE. | BROKE BOB'S
SORDID AFFAIR IN THOSE. GOSSIPY CRYPTOGRAPHIC FRIVATE KEY AND EXTRACTED THE
PROTOCOL. SPECS WITH THOSE BUSYBOPIES TEXT OF HER MESSAGES. BUT DOES

SCHNEIER AND RIVEST, ALWAYS TAKING ALICE'S || ANYONE. REALIZE HOW MUCH IT. HURT?
SIDE, ALWAYS LABELING M THE ATTAGKER. /

A ?

SAID 1T WAS NOTHING, BUT | DION T WANT T BELEVE- || So BEFORE You <0 GUICKLY LABEL
E‘Emlmmo Fsgﬂormﬂmucm OF COURSE ON SOME LEVEL. | [ME A THIRD PARTY To THE CoMan~
AUTHENTICATED SIGNATURES ONTHE. || | REALIZED IT\WAS A KNOWN- [| UNICATION, JUST REMEMBER ©

FILES To THE LIPSTICK HEART SWEARED|| PLANTEXT ATACK. BUT | | | LOVED HIM FIRST. WE
ONTHE DISK SCREAMED ALCE." || CoULDNT ADMIT 1T UNTIL|| HAR SOMETHING AND SHE
/ _ | Sk FOR MSELY, / TORE |T AWAY. SHES

THE Aﬂw?ma,mms.
¥ % oo

Public-Key Cryptography

Problem: With symmetric ciphers, every
sender-receiver pair must share a secret key

Question: What if we could use
different keys for encryption and decryption?

Diffie-Hellman Key Exchange

Whitfield Diffie and Martin Hellman, 1976

Bob

Passive Eavesdropper

Lets Alice and Bob establish a shared secret
even if Eve is listening in

1/7/2011

10

Diffie-Hellman Key Exchange

o Agree on a large prime p
Vs and primitive element g
) § that generates the group Z; ﬂ
Alice (p, g can be public) Bob
Chooses random
x<p (secret) a:=g*modp
Chooses random
y<p (secret)
b:=g"modp
Calculates Calculates
k:=b*mod p k:=a’mod p

Why this works:
b= (g =(gy=a (mod p)

Difficulty?

Diffie-Hellman (DH) problem:

Compute g given gand ¢ (mod p)
Best known approach: Compute x from g*
= Called the discrete logarithm (DL) problem
= No known efficient algorithm
Modular exponentiation believed to be a
one-way function

= Easy to compute
= Hard to invert

1/7/2011

11

Attacking Diffie-Hellman

% £

4

Mallory
Chooses
randomx < p g~
Chooses
random v <p g’
Chooses
p random y <p
Chooses
gv random w < p
k= (g")" k= (g")" k':=(g"y

k=Y

RSA

Ron Rivest, Adi Shamir, Len Adleman (1977)
Used for encryption and signatures

Based on a trapdoor function
= Easy to compute
= Hard to invert without special information

Based on apparent difficulty of factoring
large numbers

1/7/2011

12

RSA in One Slide

P, q large random primes
n:=pq modulus

t :=(p-1)(g-1) ensures x' =1 (mod n)
€ := [small odd value] pUb“C exponent
d:=1/emod t private exponent

Publickey: (n, e)
Private key: anyofp,gq,t d

Encryption: c:=m®modn
Decryption: m:=c?modn

Why? (m®)d=med = mk*2 = (m')m = 1km =m (mod n)

RSA for Encryption

Publish: (n, e)
Store secretly: d
Encryption of m
Choose random k same size as n
c:=k®modn
Send ¢, encrypt m with AES using k

Decryption
k := c®mod n; decrypt m with AES using k

Why don’t we use RSA to
directly encrypt the message?

1/7/2011

13

1/7/2011

RSA for Signatures

Publish: (n, e)

Store secretly: d

Signing m
Seed a CPRNG with m and calculate
pseudorandom string s same size as n
o:=s%modn

Verifying a signature on m
Recalculate s from m
Checks=0°modn

D-H with Authentication

-

Mallory

4

Chooses random
y<p (secret)

Chooses random

x<p (secret) a:=g<modp Sign,,..(a)

b:=g’modp Signg,(a,b)

Verifies signature Verifies signature
Calculates Calculates
k:=b*mod p k:=a’modp

14

Establishing Trust

How do Alice and Bob learn each others’
signature verification keys?

Web of Trust
= Transitive trust among associates (e.g. PGP)

Public Key Infrastructure (PKI)

= Trusted third-party Certificate Authority (CA)
binds keys-identities (e.g. SSL)

Security Reading Group

Thursdays 12-1:30pm
Read 1 paper, get free lunch

Get on the mailing list,
http://wiki.eecs.umich.edu/secrit/

1/7/2011

15

Thursday’s Class: Alex’s Intro

1/7/2011

16

