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A Signal Analysis of Network Traffic Anomalies
Paul Barford, Jeffery Kline, David Plonka and Amos Ron

Abstract—Identifying anomalies rapidly and accurately is critical to the
efficient operation of large computer networks. Accurately characterizing
important classes of anomalies greatly facilitates their identification; how-
ever, the subtleties and complexities of anomalous traffic can easily con-
found this process. In this paper we report results of signal analysis of four
classes of network traffic anomalies: outages, flash crowds, attacks and
measurement failures. Data for this study consists of IP flow and SNMP
measurements collected over a six month period at the border router of a
large university. Our results show that wavelet filters are quite effective at
exposing the details of both ambient and anomalous traffic. Specifically,
we show that a pseudo-spline filter tuned at specific aggregation levels will
expose distinct characteristics of each class of anomaly. We show that an
effective way of exposing anomalies is via the detection of a sharp increase
in the local variance of the filtered data. We evaluate traffic anomaly sig-
nals at different points within a network based on topological distance from
the anomaly source or destination. We show that anomalies can be exposed
effectively even when aggregated with a large amount of additional traffic.
We also compare the difference between the same traffic anomaly signals
as seen in SNMP and IP flow data, and show that the more coarse-grained
SNMP data can also be used to expose anomalies effectively.

I. INTRODUCTION

Traffic anomalies such as failures and attacks are common-
place in today’s computer networks. Identifying, diagnosing and
treating anomalies in a timely fashion is a fundamental part of
day to day network operations. Without this kind of capability,
networks are not able operate efficiently or reliably. Accurate
identification and diagnosis of anomalies first depends on robust
and timely data, and second on established methods for isolating
anomalous signals within that data.

Network operators principally use data from two sources to
isolate and identify traffic anomalies. The first is data available
from Simple Network Management Protocol (SNMP) queries to
network nodes. This Management Information Base (MIB) data
is quite broad, and mainly consists of counts of activity (such as
number of packets transmitted) on a node. The second type of
data available is from IP flow monitors. This data includes pro-
tocol level information about specific end-to-end packet flows
which make it more specific than SNMP data. The combination
of these types of data provides a reasonably solid measurement
foundation for anomaly identification.

Unfortunately, current best practices for identifying and di-
agnosing traffic anomalies are almost all ad hoc. These con-
sist mainly of visualizing traffic from different perspectives and

P. Barford and A. Ron are members of the Computer Sciences Department at
the University of Wisconsin, Madison. E-mail: pb,amos@cs.wisc.edu. J. Kline
is a member of the Mathematics Department at the University of Wisconsin,
Madison. E-mail: kline@math.wisc.edu. D. Plonka is a member of the Divi-
sion of Information Technology at University of Wisconsin, Madison. E-mail:
plonka@doit.wisc.edu

identifying anomalies from prior experience. While a variety
of tools have been developed to automatically generate alerts to
failures, it has generally been difficult to automate the anomaly
identification process. An important step in improving the capa-
bility of identifying anomalies is to isolate and characterize their
important features.

A road map for characterizing broad aspects of network traffic
was outlined in [1]. In this paper, we restrict our focus to one as-
pect of that work and report results of a detailed signal analysis
of network traffic anomalies. Our analysis considers the time-
frequency characteristics of IP flow and SNMP data collected at
the border router of the University of Wisconsin-Madison over
a 6 month period. Included with these data is a catalog of 109
distinct traffic anomalies identified by the campus network en-
gineering group during the data collection period. This combi-
nation of data enabled us to focus our efforts on how to employ
filtering techniques to most effectively expose local frequency
details of anomalies.

To facilitate this work, we developed the Integrated Measure-
ment Analysis Platform for Internet Traffic (IMAPIT). IMAPIT
contains a data management system which supports and inte-
grates IP flow, SNMP and anomaly identification data. IMAPIT
also includes a robust signal analysis utility which enables the
network traffic data to be decomposed into its frequency com-
ponents using a number of wavelet and framelet systems. More
details of IMAPIT are given in Sections IV and V.

Initially, we analyzed a variety of traffic signals by applying
general wavelet filters to the data. Wavelets provide a power-
ful means for isolating characteristics of signals via a combined
time-frequency representation1. We tested the wavelet analy-
sis by applying many different wavelet systems to traffic signals
to determine how to best expose the characteristics of anoma-
lies recorded therein. We accepted the constraint that our flow
and SNMP data was collected at five minute intervals, thereby
precluding analysis on finer timescales. Nevertheless, we were
able to select a wavelet system and develop algorithms that ef-
fectively expose the underlying features of both ambient and
anomalous traffic.

Not surprisingly, our analysis shows clear daily and weekly
traffic cycles. It is important to be able to expose these com-
ponents so that anomalous traffic can be effectively isolated.
Our analysis then focused on anomalies by separating them
into two groups based on their observed duration. The first
group consisted of flash crowd events which were the only
long-lived events in our data set - these typically span up to a
week. Flash crowd anomalies are effectively exposed using the
low frequency representation in our system. The second group
of anomalies are those that were short-lived and consisted of
network failures, attacks, and other events. These short-lived

1Standard Fourier analysis only enables localization by frequency.
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anomalies are more difficult to expose in data due to their sim-
ilarity to normal bursty network behavior. We found that these
signals could be effectively exposed by combining data from
the mid and high frequency levels. Our investigation of which
combinations of data best expose anomalies included compar-
ing SNMP to IP flow data, breaking down flow data by packet,
byte and flow metrics, and measuring variations in the packets’
average size.

One important test that we developed for exposing short-lived
events was based in computing the normalized local variance
of the mid and high frequency components of the signal. The
intuition for this approach is that the “local deviation” in the
high frequency representation exposes the beginning and end
of short-lived events and the local variability in the mid fre-
quency filters expose their duration. Large values of these local
variances indicates a sharp unpredictable change in the volume
of the measured quantity. Our Deviation Scoring method de-
scribed in Section IV is a first step at attempting to automate
anomaly detection (which is now typically done by visual in-
spection of time-series network traffic plots) through the use
of multi-resolution techniques. Employing this method on our
data over a number of weeks actually exposed a number of true
anomalies (verified post-mortem by network engineers) that had
not been cataloged previously.

While the majority of our work focused on identifying
anomalies in aggregate traffic at the campus border router, the
source and destination address in the IP flow data allows us to
isolate anomalies at different points in the network (by prun-
ing away traffic from various subnets). As you move closer
to the source of an anomaly, the event typically becomes more
pronounced in the data and thus easier to expose. However, if
the event takes place at a point in the network where there is
lower aggregation of traffic then there is typically more variabil-
ity in the ambient traffic and, as a result, the task of isolating
the anomaly signal becomes more difficult. We show that our
methods work well whether the measurement point is close to
or distant from the point of the anomaly.

This paper is organized as follows. In Section III we describe
the data sets we use in this work. We also describe current best
practices employed by network operators for general anomaly
detection. In Section IV we describe our signal analysis meth-
ods and the IMAPIT framework. In Section V we present the
results of our analysis and discuss their implications. We evalu-
ate the performance of our anomaly detection method in Section
VI, and then summarize, conclude and discuss future work in
Section VII.

II. RELATED WORK

General properties of network packet traffic have been stud-
ies intensely for many years - standard references include [2],
[3], [4], [5]. Many different analysis techniques have been em-
ployed in these and other studies including wavelets in [6]. The
majority of these traffic analysis studies have been focused on
the typical, packet level and end-to-end behavior (a notable ex-
ception being [7]). Our focus is mainly at the flow level and
on identifying frequency characteristics of anomalous network
traffic.

There have been many prior studies of network fault detection

methods. Example include [8], [9], [10]. Feather et al. use sta-
tistical deviations from normal traffic behavior to identify faults
[11] while a method of identifying faults by applying thresholds
in time series models of network traffic is developed in [12].
These studies focus on accurate detection of deviations from
normal behavior. Our work is focused on identifying anoma-
lies by removing first from the signal its predictable, ambient
part, and only then employing statistical methods. Wavelet are
used for the former task.

Detection of black-hat activity including denial-of-service
(DoS) attacks and port scan attacks has also been treated widely.
Methods for detecting intrusions include clustering [13], neural
networks [14] and Markov models [15]. Moore et al. show
that flow data can be effective for identifying DoS attacks [16].
A number of intrusion detection tools have been developed in
recent years in response to the rise in black-hat activity. An ex-
ample is Bro [17] which provides an extensible environment for
identifying intrusion and attack activity. Our work complements
this work by providing another means for identifying a variety
of anomalous behaviors including attacks.

We identify flash crowds as an important anomaly category.
The events of September 11, 2001 and the inability of most on-
line news services to deal with the offered demand is the most
extreme example of this kind of behavior. While infrastructure
such as content delivery networks (CDNs) have been developed
to mitigate the impact of flash crowds, almost no studies of their
characteristics exist. A recent study on flash crowds is by Jung
et al. in [18]. That work considers flash crowds (and DoS at-
tacks) from the perspective of Web servers logs whereas ours
is focused on network traffic. Finally, cooperative pushback is
proposed in [19] as a means for detection and control of events
such as flash crowds.

III. DATA

A. The Measurement Data

Our analysis is based on two types of network traffic data
types: SNMP data and IP flow data. The source of both was
a Juniper M10 router which handled all traffic that crossed the
University of Wisconsin-Madison campus network’s border as
it was exchanged with the outside world. The campus network
consists primarily of four IPv4 class B networks or roughly
256,000 IP addresses of which fewer than half are utilized. The
campus has IP connectivity to the commodity Internet and to re-
search networks via about 15 discrete wide-area transit and peer-
ing links all of which terminate into the aforementioned router.

The SNMP data was gathered by MRTG [20] at a five minute
sampling interval which is commonly used by network opera-
tors. The SNMP data consists of the High Capacity interface
statistics defined by RFC2863 [21] which were polled using
SNMP version 2c. This analysis used the byte and packet coun-
ters for each direction of each wide-area link, specifically these
64-bit counters: ifHCInOctets, ifHCOutOctets, ifHCInUcastP-
kts, and ifHCOutUcastPkts.

The flow data was gathered using flow-tools [22] and was
post-processed using FlowScan [23]. The Juniper M10 router
was running JUNOS 5.0R1.4, and later JUNOS 5.2R1.4, and
was configured to perform “cflowd” flow export with a packet
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sampling rate of 96. This caused 1 of 96 forwarded packets to
be sampled, and subsequently assembled into flow records simi-
lar to those defined by Cisco’s NetFlow [24] version 5 with sim-
ilar packet-sampling-interval and 1 minute flow active-timeout.
The packet and byte counts computed from those flow records
were then multiplied by the sampling rate to approximate the
actual byte and packet rates. We have not attempted to formally
determine the accuracy of packet-sampling-based flow measure-
ments as compared with the SNMP measurements. However, it
is common to use such measurements in network operations.

Both the SNMP and flow data were post-processed to pro-
duce rate values and stored using the RRDTOOL [20] time-
series database. The archives were configured to retain values at
five minute granularity from September 25, 2001 through April
4, 2002. Internet service providers which bill customers based
upon 95th percentile peak interface usage have a similar reten-
tion policy for SNMP data. However, most other network oper-
ators retain the five-minute granularity data for only about two
days (50 hours for MRTG, by default), after which that data is
coalesced into averages over a increasingly longer time inter-
vals; typically 30 minute, 2 hour, and 24 hour averages. For the
campus, with approximately 600 IP subnets, this set of data re-
sulted in a database of approximately 4GB in size. The collected
flow records were retained to validate the results of the analysis.
They were collected at five minute intervals resulting in about
60,000 compressed files of approximately 100GB in total com-
bined size.

Though uncommon, our analysis also considered the average
IP packet size, as computed from corresponding byte and packet
rates. Because many applications have typical packet sizes, of-
ten bimodal with respect to requests and responses or data and
acknowledgments, analysis of this metric occasionally exposes
application usage even when only SNMP-based byte and packet
interface rate statistics are available.

In parallel with the collection of the measurement data, a jour-
nal of known anomalies and network events was maintained.
The log entries in this journal noted the event’s date and time,
and a one-line characterization of the anomaly. Furthermore, a
simple nomenclature was used to label events as one of these
types:
• Network: A network failure event or temporary misconfig-
uration resulting in a problem or outage. For instance: router
software spontaneously stopped advertising one of the campus
class B networks to campus BGP peers.
• Attack: Typically a Denial-of-Service event, usually flood-
based. For instance: an outbound flood of 40-byte TCP packets
from a campus host that has had its security compromised and
is being remotely controlled by a malicious party.
• Flash: A flash crowd [18] event. For instance: the increase in
outbound traffic from a campus ftp mirror server following a
release of RedHat Linux.
• Measurement: An anomaly that we determined not to be
due to network infrastructure problems nor abusive network us-
age. For example: a campus host participating in TCP bulk
data transfer with a host at another campus as part of a research
project. Problems with the data collection infrastructure itself
were also categorized as “Measurement” anomalies. These in-
clude loss of flow data due to router overload or unreliable UDP

TABLE I

TYPES AND COUNTS OF NETWORK ANOMALY EVENTS IN THE TRAFFIC

DATABASE USED IN THIS STUDY.

Anomaly Type Count

Network 41
Attack 46

Flash Crowd 4
Measurement 18

Total 109

NetFlow transport to the collector.
In this way, a total of 168 events were identified and a subset

researched and tagged by the engineers operating the campus
network. Table I shows the distribution of types among the 109
tagged events. All flash crowd events occuring during the mea-
surement period were selected along with a sampling of anoma-
lies in the other three categories based on those that had the most
detailed description in the operator’s journal. While the journal
did not record every traffic anomaly during the measurement pe-
riod, it acted as a unique road map for exploring the raw traffic
measurement data, and provided a basis for determining if the
anomalies could detected or characterized automatically.

B. Best Current Practice

Experienced network operators often employ effective, but ad
hoc, methods of problem determination and anomaly detection.
These techniques rely heavily on an operator’s experience and
persistent personal attention.

Modern network management systems (NMS) software pro-
vides two common tools for handling SNMP data. The first, and
ostensibly most-used, is a graphing tool capable of continuously
collecting and plotting values from the MIBs. It is not uncom-
mon for a network operators to fill their workstations’ screens
with plots of traffic as it passes through various network ele-
ments.

The second is an alarm tool, which periodically performs
tests on collected values and notifies operators accordingly.
Such tools are based on locally authored rules, perhaps aug-
mented by heuristics provided by the NMS vendor. These rules
are often rudimentary conditional threshold tests such as, “if
(router.interface1.utilization > 50%) then notify”. The result-
ing expert knowledge expressed in these rules is not necessarily
portable to any other network environment.

Tools for handling flow data are less mature. Freely-available
tools such as those employed in our work, have achieved a cer-
tain level of popularity among operators of enterprise and large
networks. These tools leverage existing SNMP experience by
converting detailed flow-export records into familiar time-series
data. Tabular data, compiled by either commercial and freely-
available tools, is occasionally used as well.

The major deficiency of these tools is the amount of expert
local knowledge and time required to setup and use them perva-
sively. For instance, we collected about 6,000 unique time-series
metrics from just a single network element, namely our campus
border router. This amount of data prohibits visual inspection
of graphs containing plots of all but a small subset of those met-
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rics.

IV. METHODS

A. Wavelet Analysis

A typical input of our analysis platform is a string of Internet
traffic measurements. One of the basic principles of our method-
ology is the treatment of the measurement string as a generic
signal, ignoring, at least to a large degree, the semantics of sig-
nal (such as the content of the packet header), the instrumenta-
tion used (e.g. SNMP vs. FlowScan), the quantity which is being
measured (packet count, byte count, incoming traffic, outgoing
traffic), or the actual subnet which is targeted. We do pay careful
attention to time aggregation of the measurement (one measure-
ment for each five minutes) in order to capture daily and weekly
patterns or inconsistencies. An approach like the above is impor-
tant since we would like to build a platform which is portable,
and that can be automated. Any analysis tool that depends heav-
ily on the nature of a particular local subnet will almost surely
not be portable to other locations in the due to the heterogeneity
of Internet traffic.

The basic tool we employ is wavelet analysis. The wavelet
tool organizes the data into strata, a hierarchy of component
“signals”, each of which maintains time as its independent vari-
able. The lower strata contain very sparse filtered information
that can be thought of as sophisticated aggregations of the orig-
inal data. We refer to that part of the representation as the
low-frequency representation. In our algorithm, we derive one
such representation, i.e. a single dataset that extracts the gen-
eral slow-varying trends of the original signal. In contrast, the
very high strata in the hierarchy capture fine-grained details of
the data, such as spontaneous variations. These are referred to
as the high-frequency strata.

Let us review with a bit more detail the so-called “wavelet
processing”. This processing is actually made of two comple-
mentary steps: the first is analysis/decomposition and the other
is its inverse, the reconstruction/synthesis process.

Analysis: The goal of the analysis process is to extract from
the original signal the aforementioned hierarchy of derived sig-
nals. This is done as an iterative process. The input for each
iteration is a signal x of length N . The output is a collection
of two or more derived signals, each of which is of length N/2.
Each output signal is obtained by convolving x with an specially
designed filter F and then decimating every other coefficient of
that convolution product. We denote by F (x) the output sig-
nal so obtained. One of the special filters, denoted herein as L,
has a smoothing/averaging effect, and its corresponding output
L(x) is the low-frequency output. The other filters, H1, . . . , Hr

(r ≥ 1) are best thought of as “discrete differentiation”, and a
typical output Hi(x) should capture only the “fine-grained de-
tails”, i.e. of the high-frequency content of the signal x. The
iterations proceed with the further decomposition of L(x), cre-
ating the (shorter) signals L2(x), H1L(X), . . . , HrL(x). Con-
tinuing in this manner, we obtain a family of output signals of
the form HiL

j−1(x). The index j counts the number of low-
pass filtering iterations applied to obtain the output signal: the
larger the value of j, the lower the derived signal is in our hierar-
chy. Indeed, we refer to HiL

j−1(x) as belonging to the jth fre-

quency level, and consider a higher value of j to corresponding
to a lower frequency. If our original signal x consists of mea-
surements taken at five minute intervals, then the derived signal
HiL

j−1(x) consists of data values that are 2j × 5 minutes apart
one from the other. Thus, as j grows, the corresponding output
signal becomes shorter and records a smoother part of the sig-
nal. The values of the derived signals HiL

j−1(x) (i = 1, . . . , r,
j ≥ 1) are known as the wavelet coefficients.

For example, let us consider the case j = 6. At that level, the
derived signal HiL

6(x) contains aggregated data values that are
26 × 5 = 320 minutes apart. At that aggregation level (if done
correctly) we should not anticipate seeing subtle variations that
evolve along, say, two or three hour duration; we will see, at
best, a very blurry time-stamp of such variations. On the other
hand, the coefficients at that level might capture well the varia-
tions between day and night traffic.

The synthesis iterations perform the inverse of the anal-
ysis: at each step the input signals for the iteration are
Lj(x), H1L

j−1(x), . . . , HrL
j−1(x), and the output is the sig-

nal Lj−1(x). This is exactly the inverse of the jth iteration of
the analysis algorithm. By employing that step sufficiently many
times, one recaptures the original signal.

One possible way of using the wavelet process is in
“detection-only” mode. In this mode, one examines the vari-
ous derived signals of the decomposition, and tries to infer from
them information about the original signal.

Wavelet-based algorithms are usually more sophisticated and
attempt to assemble a new signal from the various pieces in the
decomposition. This is done by altering some of the values of
some of the derived signals of the decomposition step and then
applying reconstruction. The general idea is to suppress all the
values that carry information that we would like to ignore. For
example, if we wish only to view the fine-grained spontaneous
changes in the data, we will apply a threshold to the entries in
all the low-frequency levels, i.e. replace them by zeros.

The above description falls short of resulting in a well-defined
algorithm. For example, suppose that we would like to suppress
the day/night variation in the traffic. We mentioned before that
such variations appear in frequency level 6 (and definitely in
lower levels as well). But, perhaps that are also recorded in
the derived signal at level 5? It turns out that there is no sim-
ple answer here. The wavelet tranform we describe here is one
of many possible wavelet systems, each of which might pro-
vide a unique decomposition of the data. Unfortunately, choos-
ing among the subtle details of each wavelet transform often
requires an expert understanding of the performance of those
wavelet decompositions. Their ultimate success depends on se-
lecting a wavelet transform that suits the given application.

Time frequency-localization: approximation orders and van-
ishing moments. In a highly qualitative description, the selection
of the wavelet transform should be based on a careful balance
between it’s time localization characteristics, and its frequency
localization characteristics.

Time localization is a relatively simple notion that is primar-
ily measured by the length of the filters that are employed in the
transform. Long filters lead to excessive blurring in the time do-
main. For example, the use of long filters denies us the ability to
easily distinguish between a very strong short-duration change
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in traffic volume, as opposed to a milder change of longer du-
ration. Since, for anomaly detection, the ability to answer ac-
curately the question “when?” is critical, we chose a wavelet
system for very short filters.

Frequency localization. In our context, there are two charac-
teristics of the wavelet system that may be regarded as belonging
to this class.

One way to measure frequency localization is by measuring
the number of vanishing moments that the analysis filters Hi

possess. We say that the filter Hi has k vanishing moments if
Ĥ(0) = Ĥ ′(0) = . . . = Ĥ(k−1)(0) = 0 where Ĥ is the Fourier
series of H . In every wavelet system, every filter Hi has at least
one vanishing moment. Filters with a low number (usually one
or two) of vanishing moments may lead to the appearance of
large wavelet coefficients at times when no significant event is
occurring thus resulting in an increasing in the number of false
positive alerts. In order to create a wavelet transform with high
number of vanishing moments, one needs to select longer filters.

Another closely related way to measure frequency localiza-
tion is via the approximation order of the system. We forgo
explaining the details of this notion and mention only that the
decision to measure frequency localization either via vanishing
moments or by approximation order depends primarily on the
objective and the nature of algorithm that is employed.

The last issue in this context is the artifact freeness of the
transform. For many wavelet systems, the reconstructed (mod-
ified) signal shows “features” that have nothing to do with
the original signal, and are artifacts of the of the filters used.
Wavelet filters that are reasonably short and do not create
such undesired artifacts are quite rare; thus, our need for good
time localization together with our insistence on an artifact-free
wavelet system narrowed the search for the “optimal” system in
a substantial way.

The wavelet system we employ: We use a bi-frame version
of a system known as PS(4,1)Type II (cf. [25]). This is a
framelet system, i.e. a redundant wavelet system (which es-
sentially means that r, the number of high-pass filters, is larger
than 1; a simple count shows that, if r > 1, the total number of
wavelet coefficients exceeds the length of the original signal). In
our work, the redundancy itself is not considered a virtue. How-
ever, the redundancy provides us with added flexibility: it allows
us to construct relatively short filters with very good frequency
localization.

In our chosen system, there is one low-pass filter L and three
high-pass filters H1, H2, H3. The analysis filters are all 7-tap
(i.e. each have 7 non-zero coefficients), while the synthesis fil-
ters are all 5-tap. The vanishing moments of the high-pass anal-
ysis filters are 2, 3, 4, respectively, while the approximation or-
der of the system is 42. The “artifact freeness” of our system is
guaranteed since our low-pass filters deviate only mildly from
spline-filters (that perform pure multiple averages, and are the
ideal artifact-free low-pass filters).

The analysis platform. We derive from a given signal x (that

2Our initial assumption was that the Internet traffic is not smooth, and there
might not be enough gain in using a system of approximation order 4 (had we
switched to a system with approximation order 2, we could have used shorter
filters). However, comparisons between the performance of the PS(4,1) Type II
to the system RS4 (whose filters are all 5-tap, but whose approximation order is
only 2), yielded a significant difference in performance.

represents five-minute average measurements) three output sig-
nals, as follows. The description here fits a signal that has been
measured for two months. Slightly different rules were em-
ployed for shorter duration signals (e.g. a signal measured for a
week).
• The L(ow frequency)-part of the signal, obtained by synthe-
sizing all the low-frequency wavelet coefficients from levels 9
and up. The L-part of the signal should capture patterns and
anomalies of very long duration: several days and up. The sig-
nal here is very sparse (its number of data elements is approxi-
mately 0.4% of those in the original signal), and captures weekly
patterns in the data quite well. For many different types of In-
ternet data, the L-part of the signal reveals a very high degree
of regularity and consistency in the traffic, hence can reliably
capture anomalies of long duration (albeit it may blur various
characteristics of the abnormal behavior of the traffic.)
• The M(id frequency)-part of the signal, obtained by synthesiz-
ing the wavelets coefficients from frequency levels 6, 7, 8. The
signal here has zero-mean, and is supposed to capture mainly
the daily variations in the data. Its data elements number about
3% of those in the original signal.
• The H(igh frequency)-part of the signal is obtained by thresh-
olding the wavelet coefficients in the first 5 frequency levels, i.e.
setting to zero all coefficients whose absolute value falls below a
chosen threshold (and setting to zero all the coefficients in level
6 and up). The need for thresholding stems from the fact that
most of the data in the H-part consists of small short-term varia-
tions, variations that we think of as “noise” and do not aid us in
our anomaly detection objective.

We close this section with two technical comments: while the
theory of thresholding redundant representations is still in rudi-
mentary form, it is evident to us that we should vary the thresh-
olding level according to the number of vanishing moments in
the filter (decreasing the threshold for the filter with high van-
ishing moments.) We have not yet implemented this technique.
Finally, due to its high approximation order, our system cannot
capture accurately sharp discontinuities in the data.

Detection of anomalies. While it is unlikely that a single
method for detecting anomalies will be ever found3, we have
taken a first step at developing an automated method for identi-
fying irregularities in the measured data. Our algorithm, which
we call a deviation score, has the following ingredients:
1. Normalize the H- and M-parts to have variance one. Com-
pute the local variability of the (normalized) H- and M-parts
by computing the variance of the data falling within a moving
window of specified size. The length of this moving window
should depend on the duration of the anomalies that we wish to
captured. If we denote the duration of the anomaly by t0 and the
time length of the window for the local deviation by t1, we need,
in the ideal situation, to have q := t0/t1 ≈ 1. If the quotient q is
too small, the anomaly may be blurred and lost. If the quotient
is too large, we may be overwhelmed by “anomalies” that are
of very little interest to the network operators. Our current ex-
periment focuses on anomalies of duration 1-4 hours, and uses
a moving 3-hour local deviation window. Shorter anomalies of

3After all, there is not a single definition of “anomaly”. Should we consider
any change in the measured data to be an anomaly or only those that correspond
to an identifiable change in network state?
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sufficient intensity are also detected.
2. Combine the local variability of the H-part and M-part of the
signal using a weighted sum. The result is the V(ariable)-part of
the signal.
3. Apply thresholding to the V-signal. By measuring the peak
height and peak width of the V-signal, one is able to begin to
identify anomalies, their duration, and their relative intensity.
We provide further details of our application of this technique in
Section V.

While this approach to identifying anomalies that occur over
periods of hours appears to be promising, it is only the first step
in a process of automated anomaly detection based on the use of
wavelet coefficients. Our choice of using scale dependent win-
dowing to calculate deviation score is motivated by simplicity.
This approach enabled us to easily quantify the significance of
local events by using the reconstructed signal’s local variability.
In the future, we may find that direct use of combinations of
wavelet and approximation coefficients (or other components)
will be sufficient for accurate automated anomaly detection. To
that end, as future work, we plan to investigate which compo-
nents provide the best descrimination and to employ machine
learning tools and techniques to develop more robust automated
anomaly detectors. This approach will enable us to evaluate
quantitatively which combinations of wavelet (or other) features
provide the best detection capability.

B. The IMAPIT Analysis Environment

The IMAPIT environment we developed for this study has
two significant components: a data archive and a signal analysis
platform. The data archive uses RRDTOOL (mentioned in Sec-
tion III) which provides a flexible database and front-end for our
IP flow and SNMP data. The analysis platform is a framelet sig-
nal analysis and visualization system that enables a wide range
of wavelet systems to be applied to signals.

Signal manipulation and data preparation in IMAPIT analysis
was performed using a modified version of the freely-available
LastWave software package [26]. In addition to wavelet decom-
position, we implemented our deviation score method for expos-
ing signal anomalies. Both flow and SNMP time-series data can
be used as input to compute the deviation score of a signal.

Calculating the deviation score has four parameters: an M-
window size, an H-window size, and the weights assigned to the
M- and H-parts. We used only a single constant set of parameter
values to produce the results in Section V. However, one can
tune IMAPIT’s sensitivity to instantaneous events by modifying
the moving window size used in constructing the local deviation;
a smaller window is more sensitive. The weights used on the M-
and H-parts allow one to emphasize events of longer or shorter
duration.

In our analysis, we found most anomalies in our journal had
deviation scores of 2.0 or higher. We consider scores of 2.0 or
higher as “high-confidence”, and those with scores below 1.25
as “low-confidence”. Where deviation scores are plotted in fig-
ures in Section V, we show the score as a grey band clipped
between 1.25 and 2.0 on the vertical axis, as labeled on the right
side. An evaluation of deviation scoring as a means for anomaly
detection can be found in Section VI.

V. RESULTS

We decompose each signal under analysis into three distinct
signals (low/mid/high). As a point of reference, if the signal
under analysis is 1 week long (the period used to evaluate short-
lived anomalies), the H-part is frequency levels 1,2,3; the M-
part is frequency levels 4,5; the L-part is the remainder. If the
signal is 8 weeks long (the period used to evaluate long-lived
anomalies), the M-part is frequency levels 6,7,8; and the L-part
is the remainder.
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Fig. 1. Aggregate byte traffic from IP flow data for a typical week plus
high/mid/low decomposition.
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Fig. 2. Aggregate SNMP byte traffic for the same week as Figure 1 plus
high/mid/low decomposition.

A. Characteristics of Ambient Traffic

It is essential to establish a baseline for traffic free of anoma-
lies as a means for calibrating our results. Many studies de-
scribe the essential features of network traffic (e.g. [4]) includ-
ing the standard daily and weekly cycles. Figure 1 shows the
byte counts of inbound traffic to campus from the commodity
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Internet Service Provider during a typical week. The figure also
shows the wavelet decomposition of the signal into high, mid,
and low-band components corresponding to the H-, M-, and L-
parts discussed in Section IV. The regular daily component of
the signal is very clear in the low band4.

In Figure 2, we show the byte traffic for the same week at
the same level of aggregation as measured by SNMP. In this
case traffic was measured by utilizing high-capacity SNMP in-
terface octet counters rather than by selecting the specific BGP
Autonomous System number from the exported flow records.
The decompositions in Figures 1 and 2 are nearly indistinguish-
able. The primary difference is slightly more high-frequency
“jitter” in the flow-export-based signal5.

B. Characteristics of Flash Crowds

The first step in our analysis of anomalies is to focus on flash
crowd events. Our choice of investigating flash crowds first is
due to their long lived features which should be exposed by the
mid and low-band filters. This suggests that analysis of either
SNMP or flow-based data is suitable, however we focus on flow-
based data. Figure 3 shows the decomposition of eight weeks
of outbound traffic from one of the campus’ class-B networks
which contains a popular ftp mirror server for Linux releases.
During these weeks, two releases of popular Linux distributions
occurred, resulting in heavy use of the campus mirror server. In
this and subsequent figures, grey boxes were added by hand to
focus the reader’s attention on the particular anomaly (the posi-
tion of each box was determined by simple visual inspection).
Attention should again focus on the low-band signal. The low-
band signal highlights each event clearly as well as the long-
lived aspect of the second event.

Another way to consider the effects of flash crowds is from
the perspective of their impact on the typical sizes of packets.
The intuition here is that large data/software releases should re-
sult in an increase in average packet size for outbound HTTP
traffic and therefore packet size may be an effective means for
exposing flash crowds. Figure 4 shows eight weeks of outbound
HTTP traffic and highlights another flash crowd anomaly from
our data set. This anomaly was the result of network packet
traces being made available on a campus web server. Curiously,
for unrelated reasons, the server for this data set had its kernel
customized to use a TCP Maximum Segment Size of 512. Both
the mid-band and low-band signals in this figure show that the
outbound HTTP packets from this server were, in fact, able to
redefine the campus’ average HTTP packet size. It is also inter-
esting to note that the packet size signal becomes more stable
(the signal has fewer artifacts) during this flash crowd event.
This is particularly visible in the mid-band. Since flash crowds
typically involve a single application, it seems likely that that
application’s packet size “profile” temporarily dominates.

4We could easily expose the weekly component of the signal using higher
aggregation filters, however weekly behavior is not important for the groups of
anomalies we consider in this study.

5We will employ formal methods to quantify the difference between SNMP
and flow signals and their decompositions in future work.
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Fig. 3. Baseline signal of byte traffic for a one week on either side of a flash
crowd anomaly caused by a software release plus high/mid/low decomposi-
tion.
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Fig. 4. Baseline signal of average HTTP packet sizes (bytes) for four weeks on
either side of a flash crowd anomaly plus mid/low decomposition.

C. Characteristics of Short-term Anomalies

Short-term anomalies comprise attacks, network outages, and
measurement anomalies. The coarse-grained (5 minute inter-
vals) nature of our measurements complicates discrimination
between these categories of anomalies, thus we consider them
as a group. We evaluated 105 short-term anomalies using dif-
ferent combinations of data to determine how best expose their
features (we present analysis of several examples of short-term
anomalies to highlight their general features). In contrast to flash
crowds, short-term anomaly features should be best exposed by
mid-band and high-band filters which isolate short-timescale as-
pects of signals.

Figure 5 shows a decomposition of TCP flow counts which
exposes two inbound denial-of-service (DoS) attacks that oc-
curred during the same one week period. These two attacks
were floods of 40-byte TCP SYN packets destined for the same
campus host. Because the flood packets had dynamic source ad-
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dresses and TCP port numbers, the flood was reported as many
“degenerate” flows, having only one packet per flow. As pre-
dicted, the decomposition easily isolates the anomaly signal in
the high and mid bands. By separating these signals from the
longer time-scale behavior, we have new signals which may be
amenable to detection by thresholding.
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Fig. 5. Baseline signal of packet flows for a one week period highlighting two
short-lived DoS attack anomalies plus high/mid/low decomposition.
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Fig. 6. Baseline signal of byte traffic from flow data for a one week period show-
ing three short-lived measurement anomalies plus high/mid/low decomposi-
tion.

Another type of short-term anomaly is shown in Figure 6.
This figure shows a periodic sequence of three measurement
anomalies observed over a three day period. This was found
to be a host in the outside world performing nightly backups
to a campus backup server. The large volume of traffic each
day was due to misconfiguration of the client backup software.
As in the prior example, the decomposition easily isolates the
anomaly signal in the high and mid bands while the low band
is not affected by the anomaly. However if this anomaly had
been intended behavior, accounting for it in high and mid bands
would require additional filters in our analysis platform.

D. A Discriminator for Short-term Anomalies

One of the objectives of this work is to provide a basis for
automating anomaly detection. It is important for any anomaly
detection mechanism to minimize false positives and false neg-
atives. Our analysis led to the development of the “devia-
tion score” discrimination function for short-term anomalies de-
scribed in Section IV.

Figure 7 shows how deviation scores can be used to highlight
a series of short-term anomalies. The figure shows inbound TCP
packet rate during a week plus three anomalies that might other-
wise be difficult to discern from the baseline signal. Two of the
anomalies are DoS floods that are easily detected and exposed
automatically by their deviation scores and are marked by the
first and second grey bands. Note, the bands are actually score
values as shown by the scale on the right of the figure (the left-
most score does not quite reach 2). The third band marks an
measurement anomaly unrelated to the DoS attacks.
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Fig. 7. Deviation analysis exposing two DoS attacks and one measurement
anomaly in for a one week period in packet count data.

In Figure 8, we present a deviation analysis during a week
containing a network outage. This outage affected about one
fourth of the campus’ IPv4 address space, and therefore caused
an overall decrease in traffic. For each traffic measurement met-
ric (packets, bytes, flows), inbound or outbound, our deviation
scoring identified and marked the anomaly. This suggests that
it is feasible to use a “rules based” approach or weighted aver-
age to determine the type or scope of the anomaly based on the
accumulated impact of a set of deviation scores.

E. Exposing Anomalies in Aggregate Signals

An important issue in detecting traffic anomalies is the rela-
tionship between the strength of an anomaly’s signal in a set of
aggregated traffic. This is most easily considered with respect
to the point at which measurement data is collected in a net-
work. Intuition would say that an anomaly measured close to its
source should be very evident while the same anomaly would
be less evident if its signal were aggregated with a large amount
of other traffic. We investigate this issue by isolating a specific
subnet in which a system is the victim of a DoS attack.

Figure 9 shows the deviation analysis of two inbound DoS
floods within the aggregate traffic of the victims 254 host subnet
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Fig. 8. Deviation analysis exposing a network outage of one (of four) Class-B networks.
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and the aggregate traffic of the campus’ four Class-B networks.
The top set of graphs in this figure show that deviation scores
easily highlight the extreme nature of DoS floods in inbound
traffic within the subnet, and that they even highlight the much
less evident outbound traffic anomaly. The bottom set of graphs
show again that deviation scores highlight the same anomalies
(as well as a number of others).

F. Hidden Anomalies

Through the application of our methods, we were able to iden-
tify a number of “hidden” anomalies in our data sets. These are
anomalies that had not been previously identified by the cam-
pus network engineers. The majority of these were DoS attacks
most of which could be identified by careful visual inspection.

One hidden anomaly of interest is shown in Figure 10. This
figure shows outbound traffic from one of the campus’ class-
B networks during a four week period. The duration of this
anomaly prevented its detection via deviation score. Decom-
position enabled us to identify an anomaly that had previously
gone unnoticed and was not easily seen visually. The anomaly
is most visible following December 18th in the low-band graph
where traffic remained uncharacteristically high across two sub-
sequent days. Follow-up investigation using our repository of
flow records showed this anomaly to have been due to of net-
work abuse in which four campus hosts had their security com-
promised and were being remotely operated as peer-to-peer file
servers.
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Fig. 10. Example of three-band analysis exposing a multi-day network abuse
anomaly.

VI. DEVIATION SCORE EVALUATION

We evaluated the results of our deviation scoring method of
anomaly detection in two ways. First, we selected a set of
anomalies logged in the network operator journal as a baseline
and evaluated deviation score detection capability. Secondly, we
used the same baseline set of anomalies to evaluate the effective-
ness of an alternative detection technique based on Holt-Winters
Forecasting [12] as a comparison to deviation scoring. We were
limited in the extent to which we could evaluate either detection
method since the baseline set of anomalies used in this analy-
sis is unlikely to be complete. Therefore, we did not attempt to
determine which method reported more false-positives.

TABLE II

COMPARISON OF ANOMALY DETECTION METHODS.

Total Candidate Candidates detected Candidates detected

Anomalies Evaluated by Deviation Score by Holt-Winters

39 38 37

In each case we were somewhat tolerant of discrepancies be-
tween the anomaly timestamps in the journal’s log entries and
the times at which the automated methods reported anomalous
network traffic. Specifically, we allowed a discrepancy of as
much as 1.5 hours since both automated techniques sometimes
shift the report significantly from the time of the event’s on-
set. The respective identification of anomalies from our evalu-
ation set is summarized in Table II. As can be seen, both tech-
niques performed well in that their false-negative reports for the
39 anomalies in the candidate set were very low.

A. Deviation Score vs. Logged Anomalies

We selected 39 events from the network operator’s log of
anomalies. This subset of events were those for which a suitable
amount of evidence had been gathered to label them as “high
confidence” anomalies. This evidence gathering was a tedious
effort often involving the examination of individual flow records
to identify the specific IP header values for the packets that com-
prised the anomaly.

Of those 39 anomalies selected as a baseline for evaluation,
deviation score analysis detected 38 of them with a significantly
confident score of 1.7 or higher. For the single anomaly which
wasn’t detected by our method, its deviation score was substan-
tial but less than 1.7. Visual inspection of the plot of this signal
showed that this was due to a more prominent anomaly which
was detected earlier in the week, which suppressed the magni-
tude of the undetected anomaly’s score. This is a side-effect of
the normalization within the context of the week-long window
we used in our analysis method.

B. Holt-Winters Forecasting vs. Logged Anomalies

To further evaluate the deviation score, we compared its
anomaly detection results with the Holt-Winters Forecasting and
reporting technique that has been implemented in the freely-
available development source code of RRDTOOL version 1.1.
Holt-Winters Forecasting is a algorithm that builds upon expo-
nential smoothing which is described in [27]. The specific im-
plementation of Holt-Winters Forecasting is described in [12].

We selected this Holt-Winters method for comparison be-
cause it is perhaps the most sophisticated technique that is be-
ing used currently by network operators (although not yet by
many!). The most common techniques in use employ simple
site-specific rules-based thresholding. We summarily rejected
those simple techniques because their rules and magic numbers
for thresholding are often not portable beyond the local network
and because of their general inability to handle seasonal effects
such as daily cycles in signal amplitude. Both deviation score
and Holt-Winters analysis can be configured to take a seasonal
period into consideration, and both are being proposed as possi-
ble alternatives to analysis by visual inspection of network traf-



IN PROCEEDINGS OF ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2002 11

fic signals.
As with our deviation score method, the Holt-Winters method

also has parameters, and we configured it as follows. When
constructing the RRDTOOL databases, the “HWPREDICT”
Round-Robin Archive (RRA) was configured with alpha = 0.1,
beta = 0.0035, and a seasonal period of 288, which is a period
of one day at five minute intervals. The implementation’s de-
fault failure-threshold of 7 and a window-length of 9 were used.
This means that a minimum of 7 violations (observed values
outside the confidence bounds) within a window of 9 values was
considered a high-confidence “anomaly”. Other HWPREDICT
parameters had the default values specified by the implementa-
tion’s author.

The Holt-Winters method detected 37 out of the 39 anomalies
in our evaluation set. By visual inspection of the anomalous sig-
nals plotted together with the deviation scores and Holt-Winters
results (as shown in Figures 11 and 12), we have made the fol-
lowing observations. Two logged anomalies were not reported
confidently by the Holt-Winters method. However, careful in-
spection of the Holt-Winters predictions for those anomalies
showed that both would have been reported if only we had use a
larger window size for the reporting phase. That is, the time at
which Holt-Winters method reported the feature as anomalous
lagged behind the original time at which the event was logged
by the operator.
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Fig. 11. Holt-Winters results corresponding to Figure 7

C. Deviation Scores vs. Holt-Winters Forecasting

We found the Holt-Winters method to be more sensitive to
potential anomalies than our deviation score method. It re-
ported many more “failure” (ostensibly anomalous) events (not
included in our log) than did our method. These may have been
false-positives. The reasons for these reports are perhaps two-
fold. First, the Holt-Winters method’s parameters determine its
sensitivity, in part, and it may have been poorly configured given
for our input data set. Secondly, the deviation score technique
tends to “blur” signal features by widening them with respect to
time, making it less likely for a single anomaly to be erroneously
reported multiple times. Also, the Holt-Winters boolean report-
ing sometimes oscillated between true and false within what ap-
peared to be a single anomalous feature as determined by vi-
sual inspection. That is, the Holt-Winters method sometimes

reported what was ostensibly a single anomaly as more than
one discrete event. However, this behavior could be mitigated
by changing the parameter values, so this is not a necessarily a
general criticism of the Holt-Winters approach.

We also observed that our deviation score method more read-
ily reported small amplitude features in the signal than did the
Holt-Winters method. This is likely due to the Holt-Winters
method requiring that the given feature’s amplitude to travel out-
side its “confidence band” of a particular width to be reported as
an anomaly, whereas the deviation score method has no such
fixed values with respect to signal amplitude. Instead the devi-
ation score was based on normalized signal amplitudes within a
window that spanned 2048 five-minute data points, or just over
one week. Consequently, the deviation score values as currently
configured are not necessarily applicable outside that week-long
window. Rather, they are relative to the ambient or average
traffic levels seen within that window. This means that some
anomaly’s deviation score might be lowered by the presence of
a more prominent anomaly within the same week. This is the
same effect that happens with visual inspection if the vertical
axis (i.e. the signal’s amplitude) is auto-scaled in a time-series
plot. That is, a prominent anomaly will draw the observer’s at-
tention away from a lesser one.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present a signal analysis of network traffic
anomalies in IP flow and SNMP data collected at the University
of Wisconsin’s border router. Our data set spans 6 months and
includes a catalog of over 100 anomalies which we organize into
two distinct categories (short-lived events and long-lived events)
for analysis.

We developed the IMAPIT environment to facilitate our
work. This environment combines a flexible database system
and robust signal analysis capability. We applied a variety of
time-frequency analysis techniques to the data to determine how
best to isolate anomalies. We found a wavelet system that effec-
tively isolates both short and long-lived traffic anomalies. In
addition to this system, we developed the concept of a devia-
tion score which considers signal variation in both the high and
medium frequency bands. We found this score to be extremely
effective at isolating anomalies and to be very amenable for use
in the generation of threshold-based alerts.

Evaluation of deviation scores as a means for automating
anomaly detection shows it to be similarly effective to sophis-
ticated time-series techniques such as Holt-Winters Forecast-
ing. Both techniques have a small set of tunable parameters, and
can perform poorly if configured incorrectly or perform well if
their parameters are configured appropriately. For the set of 39
anomalies that we used for evaluation, both methods performed
well in that their false-negative reports were negligible.

These results indicate that traffic anomaly detection mech-
anisms based on deviation score techniques may be effective,
however further development is necessary. In the future, we
plan to investigate machine learning methods to evaluate the im-
pact of additional features in deviation scores. We also intend to
investigate how well the deviation score method can be imple-
mented to detect anomalies in real time. Furthermore we will
study methods for classifying anomalies which would facilitate
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Fig. 12. Holt-Winters results corresponding to Figure 8

their diagnosis and treatment. Finally, we intend to pursue the
idea of coordinated anomaly detection at multiple measurement
locations in the wide area.
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