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Abstract We present a dynamic distributed hash table where
peers may join and leave at any time. Our system tolerates
a powerful adversary which has complete visibility of the en-
tire state of the system and can continuously add and remove
peers. Our system provides worst-case fault-tolerance, main-
taining desirable properties such as a low peer degree and a
low network diameter.

1 Introduction

Storing and handling data in an efficient way lie at the
heart of any data-driven computing system. Compared
to a traditional client/server approach, decentralized peer-
to-peer (P2P) systems have the advantage to be more re-
liable, available, and efficient. P2P systems are based
on common desktop machines (“peers”), distributed over
a large-scale network such as the Internet. These peers
share data (as well as the management of the data) that is
conventionally stored on a central server. Usually, peers
are under control of individual users who turn their ma-
chines on or off at any time. Such peers join and leave
the P2P system at high rates (“churn”), a problem that
is not existent in orthodox distributed systems. In other
words, a P2P system consists of unreliable components
only. Nevertheless, the P2P system should provide a reli-
able and efficient service.

Most P2P systems in the literature are analyzed against
an adversary who can crash a functionally bounded num-
ber of random peers. After crashing a few peers the sys-
tem is given sufficient time to recover again. The scheme
described in this paper significantly differs from this in
two major aspects. First, we assume that joins and leaves
occur in a worst-case manner. We think of an adver-

∗Research (in part) supported by the Hasler Stiftung under grant
number 1828. For a full version including proofs see the TIK Report
211 (http://www.tik.ee.ethz.ch).

sary which can remove and add a bounded number of
peers. The adversary cannot be fooled by any kind of
randomness. It can choose which peers to crash and how
peers join.1 Note that we use the term “adversary” to
model worst-case behavior. We do not consider Byzan-
tine faults. Second, the adversary does not have to wait
until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly
crash peers while the system is trying to stay alive. In-
deed, our system is never fully repaired but always fully
functional. In particular, our system is resilient against an
adversary which continuously attacks the “weakest part”
of the system. Such an adversary could for example insert
a crawler into the P2P system, learn the topology of the
system, and then repeatedly crash selected peers, in an at-
tempt to partition the P2P network. Our system counters
such an adversary by continuously moving the remaining
or newly joining peers towards the sparse areas.

Clearly, we cannot allow our adversary to have un-
bounded capabilities. In particular, in any constant time
interval, the adversary can at most add and/or remove
O(log n) peers, n being the total number of peers cur-
rently in the system. This model covers an adversary
which repeatedly takes down machines by a distributed
denial of service attack, however only a logarithmic num-
ber of machines at each point in time. Our algorithm re-
lies on messages being delivered timely, in at most con-
stant time between any pair of operational peers. In dis-
tributed computing such a system is called synchronous.
Note that if nodes are synchronized locally, our algorithm
also runs in an asynchronous environment. In this case,
the propagation delay of the slowest message defines the
notion of time which is needed for the adversarial model.

1We assume that a joining peer knows a peer which already be-
longs to the system. This is known as the bootstrap problem.
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The basic structure of our P2P system is a hypercube.
Each peer is part of a distinct hypercube node; each hy-
percube node consists of Θ(log n) peers. Peers have con-
nections to other peers of their hypercube node and to
peers of the neighboring hypercube nodes. In the case
of joins or leaves, some of the peers have to change to
another hypercube node such that up to constant factors,
all hypercube nodes own the same number of peers at all
times. If the total number of peers grows or shrinks above
or below a certain threshold, the dimension of the hyper-
cube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can
be seen as a dynamic token distribution problem [13] on
the hypercube. Each node of a graph (hypercube) has a
certain number of tokens, the goal is to distribute the to-
kens along the edges of the graph such that all nodes end
up with the same or almost the same number of tokens.
While tokens are moved around, an adversary constantly
inserts and deletes tokens. Our P2P system builds on two
basic components: i) an algorithm which performs the
described dynamic token distribution and ii) an informa-
tion aggregation algorithm which is used to estimate the
number of peers in the system and to adapt the dimension
accordingly.

Based on the described structure, we get a fully
scalable, efficient P2P system which tolerates O(log n)
worst-case joins and/or crashes per constant time interval.
As in other P2P systems, peers have O(log n) neighbors,
and the usual operations (e.g. search) take time O(log n).
In our view a main contribution of the paper, however, is
to propose and study a model which allows for dynamic
adversarial churn. We believe that our basic algorithms
(dynamic token distribution and information aggregation)
can be applied to other P2P topologies, such as butter-
flies, skip graphs, chordal rings, etc. It can even be used
for P2P systems that go beyond distributed hash tables
(DHT).

The paper is organized as follows. In Section 2 we
discuss relevant related work. Section 3 gives a short de-
scription of the model. A detailed discussion of our P2P
system is given in Sections 4 and 5.

2 Related Work

A plethora of different overlay networks with various in-
teresting technical properties have been proposed over the
last years (e.g. [1, 3, 5, 6, 9, 10, 12, 15, 16, 20, 23]). Due
to the nature of P2P systems, fault-tolerance has been

a prime issue from the beginning. The systems usually
tolerate a large number of random faults. However after
crashing a few peers the systems are given sufficient time
to recover again. From an experimental point of view,
churn has been studied in [17], where practical design
tradeoffs in the implementation of existing P2P networks
are considered.

Resilience to worst-case failures has been studied by
Fiat, Saia et al. in [8, 18]. They propose a system where,
w.h.p., (1 − ε)-fractions of peers and data survive the ad-
versarial deletion of up to half of all nodes. In contrast to
our work the failure model is static. Moreover, if the total
number of peers changes by a constant factor, the whole
structure has to be rebuilt from scratch.

Scalability and resilience to worst-case joins and leaves
has been addressed by Abraham et al. in [2]. The fo-
cus lies on maintaining a balanced network rather than
on fault-tolerance in the presence of concurrent faults. In
contrast to our paper, whenever a join or leave happens,
the network has some time to adapt.

The only paper which explicitly treats arbitrarily con-
current worst-case joins and leaves is by Li et al. [11].
In contrast to our work, Li et al. consider a completely
asynchronous model where messages can be arbitrarily
delayed. The stronger communication model is compen-
sated by a weaker failure model. It is assumed that peers
do not crash. Leaving peers execute an appropriate “exit”
protocol and do not leave before the system allows this;
crashes are not allowed.

3 Model

We consider the synchronous message passing model.
In each round, each peer can send a message to all its
neighbors. Additionally, we have an adversary A(J, L, λ)
which may perform J arbitrary joins and and L arbitrary
leaves (crashes) in each interval of λ rounds.

We assume that a joining peer π1 contacts an arbi-
trary peer π2 which already belongs to the system; π2

then triggers the necessary actions for π1’s integration. A
peer may be contacted by several joining peers simulta-
neously. In contrast to other systems where peers have
to do some finalizing operations before leaving, we con-
sider the more general case where peers depart or crash
without notice.
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4 Algorithm

In this section, we describe the maintenance algorithm
which maintains the simulated hypercube in the presence
of an adversary which constantly adds and removes peers.
The goal of the maintenance algorithm is twofold. It guar-
antees that each node always contains at least one peer
which stores the node’s data. Further, it adapts the hyper-
cube dimension to the total number of peers in the system.

This is achieved by two basic components. First, we
present a dynamic token distribution algorithm for the hy-
percube. Second, we describe an information aggregation
scheme which allows the nodes to simultaneously change
the dimension of the hypercube.

4.1 Dynamic Token Distribution

The problem of distributing peers uniformly throughout
a hypercube is a special instance of a token distribution
problem, first introduced by Peleg and Upfal [13]. The
problem has its origins in the area of load balancing,
where the workload is modeled by a number of tokens
or jobs of unit size; the main objective is to distribute
the total load equally among the processors. Such load
balancing problems arise in a number of parallel and dis-
tributed applications including job scheduling in operat-
ing systems, packet routing, large-scale differential equa-
tions and parallel finite element methods. More applica-
tions can be found in [19].

Formally, the goal of a token distribution algorithm is
to minimize the maximum difference of tokens at any two
nodes, denoted by the discrepancy φ. This problem has
been studied intensively; however, most of the research
is about the static variant of the problem, where given
an arbitrary initial token distribution, the goal is to redis-
tribute these tokens uniformly. In the dynamic variant on
the other hand, the load is dynamic, that is, tokens may
arrive and depart during the execution of the token distri-
bution algorithm. In our case, peers may join and leave
the simulated hypercube at arbitrary times, so the empha-
sis lies on the dynamic token distribution problem on a
d-dimensional hypercube topology.

We use two variants of the token distribution problem:
In the fractional token distribution, tokens are arbitrarily
divisible, whereas in the integer token distribution tokens
can only move as a whole. In our case, tokens represent
peers and are inherently integer. However, it turns out that
the study of the fractional model is useful for the analysis
of the integer model.

We use a token distribution algorithm which is based
on the dimension exchange method [7, 14]. Basically,
the algorithm cycles continuously over the d dimensions
of the hypercube. In step s, where i = s mod d, ev-
ery node u := β0...βi...βd−1 having a tokens balances
its tokens with its adjacent node in dimension i, v :=
β0...βi...βd−1, having b tokens, such that both nodes end
up with a+b

2 tokens in the fractional token distribution.
On the other hand, if the tokens are integer, one node is
assigned da+b

2 e tokens and the other one gets b a+b
2 c to-

kens.
It has been pointed out in [7] that the described algo-

rithm yields a perfect discrepancy φ = 0 after d steps
for the static fractional token distribution. In [14], it has
been shown that in the worst case, φ = d after d steps in
the static integer token distribution. We can show that if
the decision to which node to assign d a+b

2 e and to which
node to assign b a+b

2 c tokens is made randomly, the final
discrepancy is constant in expectation. However, we do
not make use of this because it has no influence on our
asymptotic results.

In the following, the dynamic integer token distribution
problem is studied, where a “token adversary” A(J, L, 1)
adds at most J and removes at most L tokens at the be-
ginning of each step. In particular, we will show that if
the initial distribution is perfect, i.e., φ = 0, our algo-
rithm maintains the invariant φ ≤ 2J + 2L + d at every
moment of time.

For the dynamic fractional token distribution, the to-
kens inserted and deleted at different times can be treated
independently and be superposed. Therefore, the follow-
ing lemma holds.

Lemma 4.1. For the dynamic fractional token distribu-
tion, the number of tokens at a node depends only on the
token insertions and deletions of the last d steps and on
the total number of tokens in the system.

We can now bound the discrepancy of the integer token
distribution algorithm by comparing it with the fractional
problem.

Lemma 4.2. Let v be a node of the hypercube. Let τv(t)
and τv,f (t) denote the number of tokens at v for the inte-
ger and fractional token distribution algorithms at time t,
respectively. We have ∀t : |τv(t) − τv,f (t)| ≤ d

2 .

Lemma 4.3. In the presence of an adversary A(J, L, 1),
it always holds that the integer discrepancy φ ≤ 2J +
2L + d.
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4.2 Information Aggregation

When the total number of peers in the d-dimensional hy-
percube system exceeds a certain threshold, all nodes
β0 . . . βd−1 have to split into two new nodes β0 . . . βd−10
and β0 . . . βd−11, yielding a (d + 1)-dimensional hyper-
cube. Analogously, if the number of peers falls beyond
a certain threshold, nodes β0 . . . βd−20 and β0 . . . βd−21
have to merge their peers into a single node β0 . . . βd−2,
yielding a (d−1)-dimensional hypercube. Based on ideas
also used in [4, 21, 22], we present an algorithm which
provides the same estimated number of peers in the sys-
tem to all nodes in every step allowing all nodes to split
or merge synchronously, that is, in the same step. The
description is again made in terms of tokens rather than
peers.

Assume that in order to compute the total number of
tokens in a d-dimensional hypercube, each node v =
β0...βd−1 maintains an array Γv[0...d], where Γv[i] for
i ∈ [0, d] stores the estimated number of tokens in
the sub-cube consisting of the nodes sharing v’s pre-
fix β0...βd−1−i. Further, assume that at the beginning
of each step, an adversary inserts and removes an arbi-
trary number of tokens at arbitrary nodes. Each node
v = β0...βd−1−i...βd−1 then calculates the new array
Γ′

v[0...d]. For this, v sends Γv[i] to its adjacent node
u = β0...βd−1−i...βd−1, for i ∈ [0, d − 1]. Then, Γ′

v[0]
is set to the new number of tokens at v which is the
only node with prefix β0...βd−1. For i ∈ [1, d], the
new estimated number of tokens in the prefix domain
β0...βd−1−(i+1) is given by the total number of tokens
in the domain β0...βd−1−i plus the total number of to-
kens in domain β0...βd−1−i provided by node u, that is,
Γ′

v[i + 1] := Γv[i] + Γu[i].

Lemma 4.4. Consider two arbitrary nodes v1 and v2 of
the d-dimensional hypercube. Our algorithm guarantees
that Γv1

[d] = Γv2
[d] at all times t. Moreover, it holds

that this value is the correct total number of tokens in the
system at time t − d.

5 Simulated Hypercube

Based on the components presented in the previous sec-
tions, both the topology and the maintenance algorithm
are now described in detail. In particular, we show that,
given an adversary A(d+1, d+1, 6) which inserts and re-
moves at most d+1 peers in any time interval of 6 rounds,
1) the out-degree of every peer is bounded by Θ(log2 n)

Figure 1: A simulated 2-dimensional hypercube with four
nodes, each consisting of a core and a periphery. All peers
within the same node are completely connected to each other,
and additionally, all peers of a node are connected to all core
peers of the neighboring nodes. Only the core peers store data
items, while the peripheral peers may move between the nodes
to balance biased adversarial changes.

where n is the total number of peers in the system, 2) the
network diameter is bounded by Θ(log n), and 3) every
node of the simulated hypercube has always at least one
peer which stores its data items, so no data item will ever
be lost.

5.1 Topology

We start with a description of the overlay topology. As
already mentioned, the peers are organized to simulate a
d-dimensional hypercube, where the hypercube’s nodes
are represented by a group of peers. A data item with
identifier id is stored at the node whose identifier matches
the first d bits of the hash-value of id .

The peers of each node v are divided into a core Cv of
at most 2d + 3 peers and a periphery Pv consisting of
the remaining peers; all peers within the same node are
completely connected (intra-connections). Moreover, ev-
ery peer is connected to all core peers of the neighboring
nodes (inter-connections). Figure 1 shows an example for
d = 2.

The data items belonging to node v are replicated on
all core peers, while the peripheral peers are used for the
balancing between the nodes according to the peer dis-
tribution algorithm and do not store any data items. The
partition into core and periphery has the advantage that
the peers which move between nodes do not have to re-
place the data of the old node by the data of the new nodes
in most cases.

4



5.2 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the sim-
ulated hypercube topology described in the previous sec-
tion given an adversary A(d + 1, d + 1, 6). In particular,
it ensures that 1) every node has at least one core peer all
the times and hence no data is lost; 2) each node always
has between 3d + 10 and 45d + 86 peers; 3) only periph-
eral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

In the following, we refer to a complete execution of
all six rounds (round 1 – round 6) of the maintenance
algorithm as a phase. Basically, the 6-round algorithm
balances the peers across one dimension in every phase
according to the token distribution algorithm as described
in Section 4.1; additionally, the total number of peers in
the system is computed with respect to an earlier state
of the system by the information aggregation algorithm
of Section 4.2 to expand or shrink the hypercube if the
total number of peers exceeds or falls below a certain
threshold. In our system, we use the lower threshold
LT := 8d+16 and the upper threshold UT := 40d+80
for the total number of peers per node on average.2

While peers may join and leave the system at arbitrary
times, the 6-round algorithm considers the (accumulated)
changes only once per phase. That is, a snapshot of the
system is made in round 1; rounds 2 – 6 then ignore the
changes that might have happened in the meantime and
depend solely on the snapshot at the beginning of the
phase.
Round 1: Each node v makes the snapshot of the cur-
rently active peers. For this, each peer in v sends a packet
with its own ID and the (potentially empty) ID set of its
joiners to all adjacent peers within v.
Round 2: Based on the snapshot, the core peers of a node
v know the total number of peers in the node and send
this information to the neighboring core with which they
have to balance in this phase (cf. Section 4.1). The cores
also exchange the new estimated total number of peers in
their domains with the corresponding adjacent cores (cf.
Section 4.2). Finally, each peer informs its joiners about
the snapshot.
Round 3: Given the snapshot, every peer within a node
v can compute the new periphery (snapshot minus old
core). This round also prepares the transfer for the peer

2Note that since we consider the threshold on average, and since
these values are provided with a delay of d phases in a d-dimensional
hypercube (see Lemma 4.4), the number of peers at an individual node
may lie outside [LT ,UT ].

distribution algorithm across dimension i: The smaller of
the two nodes determines the peripheral peers that have
to move and sends these IDs to the neighboring core.
Round 4: In this round, the peer distribution algorithm
is continued: The core which received the IDs of the new
peers sends this information to the periphery. Addition-
ally, it informs the new peers about the neighboring cores,
etc.

The dimension reduction is prepared if necessary: If
the estimated total number of peers in the system is be-
yond the threshold, the core peers of a node which will
be reduced send their data items plus the identifiers of
all their peripheral peers (with respect to the situation af-
ter the transfer) to the core of their adjacent node in the
largest dimension.
Round 5: This round finishes the peer distribution, es-
tablishes the new peripheries, and prepares the building
of a new core. If the hypercube has to grow in this phase,
the nodes start to split, and vice versa if the hypercube is
going to shrink.

Given the number of transferred peers, all peers can
now compute the new peripheries. Moreover, they can
compute the new core: It consists of the peers of the old
core which have still been alive in Round 1, plus the 2d+
3 − |C| smallest IDs in the new periphery, where C is the
set of the old core peers which have still been alive in
Round 1. The old core then informs all its neighboring
nodes (i.e., their old cores) about the new core.

If the hypercube has to grow in this phase, the smallest
2d + 3 peers in the new periphery of the node that has to
be split become the new core of the expanded node, and
half of the remaining peripheral peers build its periphery.
Moreover, the necessary data items are sent to the core of
the expanded node, and the neighboring (old) cores are
informed about the IDs of the expanded core.

If the hypercube is about to shrink, all old cores in the
lower half of the hypercube (the surviving sub-cube) in-
form their periphery about the peers arriving from the ex-
panded node and the peers in the expanded node about
the new core and its periphery. The data items are copied
to the peers as necessary.
Round 6: In this round, the new cores are finally built:
The old core forwards the information about the new
neighboring cores to the peers joining the core.

Moreover, if the hypercube has been reduced, every
peer can now compute the new periphery. If the hyper-
cube has grown, the old core forwards the expanded cores
of its neighbors to all peers in its expanded node.
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Theorem 5.1. Given an adversary A(d + 1, d + 1, 6)
which inserts and removes at most d +1 peers per phase,
the described 6-round algorithm ensures that 1) every
node always has at least one core peer and hence no data
is lost; 2) each node has between 3d + 10 and 45d + 86
peers, yielding a logarithmic network diameter; 3) only
peripheral peers are moved between nodes, thus the un-
necessary copying of data is avoided.

In order to enhance clarity, we described a scheme
which is as simple as possible. Instead of a complete
bipartite graph between adjacent hypercube nodes one
could e.g. use a bipartite matching. This reduces the node
degree from O(log2 n) to O(log n). Apart from better
node degrees, all our results still hold up to constant fac-
tors.

6 Conclusions

We presented a first distributed hash table which prov-
ably tolerates dynamic worst-case joins and leaves. We
believe that our approach opens several exciting P2P re-
search challenges. For example: How well perform clas-
sic P2P proposals when studied with a dynamic failure
model or what is the adversary/efficiency tradeoff when
studying dynamic models?
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