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Abstract— For peer-to-peer services to be effective, par-
ticipating nodes must cooperate, but in most scenarios a
node represents a self-interested party and cooperation can
neither be expected nor enforced. A reasonable assumption
is that a large fraction of p2p nodes are rational and will
attempt to maximize their consumption of system resources
while minimizing the use of their own. If such behavior
violates system policy then it constitutes an attack. In
this paper we identify and create a taxonomy for rational
attacks and then identify corresponding solutions if they
exist. The most effective solutions directly incentivize coop-
erative behavior, but when this is not feasible the common
alternative is to incentivize evidence of cooperation instead.

1 INTRODUCTION

A significant challenge in peer-to-peer (p2p) comput-
ing is the problem of cooperation. Unlike client-server
systems, a p2p network’s effectiveness in meeting design
goals is directly correlated to the cooperation of the
member nodes. For example, a p2p system might be
designed for content distribution. To decrease the upload
bandwidth burden on the original content server, only a
small number of nodes directly contact it. The content
is then propagated from these nodes to additional peers.
This system can only scale if nodes are willing to pass
on content to downstream peers. Unfortunately, a self-
interested node may realize that it can save expensive
upload bandwidth if it chooses not to share. If a large
number of nodes are self-interested and refuse to con-
tribute, the system may destabilize.

In most p2p systems, self-interested behavior at the
expense of the system can be classified as a rational
manipulation failure [18] or, from a different perspective,
a rational attack1. Successful p2p systems must be
designed to be robust against this class of failure. Ideally,
a p2p system should be perfectly faithful to the designer’s
specification. In such a system, a self-interested, utility-
maximizing node “will follow the default strategy be-
cause... there is no other strategy that yields a higher
utility for this node” [19]. To achieve faithfulness, a

1Our definition for rational follows the narrow definition provided
by Shneidman et al [18]. For the purposes of our paper, rational
participants are only interested in exploiting the resources and benefits
of the system.

system may employ various measures such as problem
partitioning, catch-and-punish, and incentives [18]. Even
when these techniques cannot make a system perfectly
faithful, they may be enough to prevent destabilization.

An example of a viable p2p technology designed
to be robust against rational manipulation failures is
BitTorrent [4]. This technology first breaks large files
into chunks that are downloaded individually and re-
assembled by the receiver. The receiving nodes contact
one another and trade for chunks they do not yet possess.
Each node employs an incremental exchange algorithm
that leads it to upload chunks to cooperating nodes
and not to share with selfish ones. These incentives en-
courage cooperative behavior in participating nodes [4].
While BitTorrent is not completely immune to rational
manipulation, it is viable in practice [19].

In this paper, we identify, analyze, and create a taxon-
omy of rational attacks in p2p systems. We then examine
this taxonomy to identify corresponding solutions. In the
next two sections, we first provide a short background on
the economics principles applicable to p2p systems and
then specify our system model. The following two sec-
tions define our taxonomy of rational attacks and discuss
solutions. The final section presents our conclusions.

2 ECONOMICS BACKGROUND

Much of our analysis of p2p cooperation is based
on economic models of game theory and mechanism
design [17]. In this section, we briefly review some
critical terms and concepts as they relate to p2p systems.

An economic game is a model of interaction between
players in which the actions of any player influence the
outcome of all other players. The mechanism in a game
defines what legitimate actions the players can perform
and the outcome of their behavior. These outcomes are
assigned a numeric value called utility. Players that use
an algorithm to determine behavior are said to follow a
strategy

Players in the p2p world represent the nodes partici-
pating in the system. There are two types of nodes that
do not strategize.

� Altruistic or obedient nodes cooperate with the
system irrespective of any other considerations.



� Faulty nodes stop responding, drop messages, or act
arbitrarily.

There are two types of nodes that do strategize.
� Rational nodes strategize to achieve maximal util-

ity and their actions are based on their current
knowledge and understanding of the p2p system.
Rational nodes will not attempt to disrupt routing,
censor data, or otherwise corrupt the system unless
such behavior increases the node’s access to shared
resources. These nodes are also described as self-
interested.

� Irrational nodes also strategize, but their strategies
are either incomplete because they cannot under-
stand the mechanism or they lie outside the eco-
nomic mechanisms of the system. Denial of service
or censorship attacks are examples of this second
form of economically irrational behavior2.

Mechanism design (MD) is the process of creating
games where rational behavior by players leads to out-
comes desired by the designer. Of course, such systems
only affect the behavior of rational nodes. Mechanism
design has no impact on faulty or irrational nodes and
we exclude them from further discussion, though we
recognize that any practical p2p system deployed “in
the wild” must be resistant to their behavior. Of course,
most p2p systems are robust against failure. The impact
of irrational and malicious nodes is an open research
problem that is discussed in Castro et al [3].

Distributed algorithmic mechanism design (DAMD) is
a subclass of MD that is computationally tractable and
operates without centralization. For this reason DAMD
is well suited to systems like p2p networks [17]. DAMD
assumes each node can independently reward the coop-
eration of other nodes or penalize their misbehavior but
that each node has only limited information on the global
state of the system.

3 MODEL

3.1 Incentives Capabilities
Incentives in p2p systems have some limitations. First,

incentives are limited in the guarantees they can provide.
While the use of incentives strengthens the p2p sys-
tem against rational attacks, by themselves they do not
guarantee that the system is faithful. To be guaranteed
faithful, a mechanism must be validated by a formal
proof, the construction of which is not trivial.

2Our goal is to design systems which are immune to manipulation
by nodes seeking increased shared resources. Our definition of
rational only includes nodes whose utility function is independent of
utility payout to other nodes. Strategies, such as censorship strategies,
that obtain benefit by denying utility to other nodes are considered
irrational.

The second limitation is that they must be DAMD
compatible. DAMD is limited to creating mechanisms
that are are computationally tractable across distributed
computing resources. Nodes are expected to reward
cooperation and penalize misbehavior, but doing so is
difficult when trusted global knowledge is unavailable.

With these two limitations in mind, we identify two
types of incentives that may be used to create a faithful
p2p system. The first type is genuine incentives and is
characterized by directly incentivizing cooperation. A
genuine incentive ties current behavior and future payoff
together in some inseparable way. Genuine incentives are
inherently robust against rational attacks and limit the
strategies available to adversaries.

One example of genuine incentives is incremental
exchanges as used in BitTorrent. Money could also be
an effective genuine incentive but it would require very
efficient micropayment schemes, where potentially every
network packet transmission would require an associated
payment. Unfortunately, the current generation of such
systems (e.g., Millicent [9]) were never intended for such
fine-grained commerce.

The second type of incentive is artificial incentives3

which incentivize evidence of cooperation. Such incen-
tives are weaker than their genuine counterparts because,
to be rewarded, a node only has to appear to cooperate.
Nevertheless, artificial incentives are generally easier to
create and deploy and may be necessary under circum-
stances where genuine incentives are not feasible.

Artificial incentives are often designed around an
auditing process on top of which an enforcement mech-
anism is layered. In a decentralized system, auditing
cannot be globally managed. Each node is aware of the
system’s policies, but is independently responsible for
determining whether peers are in compliance. This can
be done by requiring each node to publish assertions
about its state which are audited by other nodes. An
auditing policy of this type is consistent with DAMD;
each node is capable of determining its behavior within
the system. An auditing system, however, is subject to
the vulnerabilities that we describe in Section 4.1.2.

3.2 Service Maturation

A p2p service provides some tangible benefit to
participating nodes. New participants may obtain their
payout spread over time, or they can obtain maximal

3Roussopoulos et al. suggests that highly valuable shared resources
have inherent incentives while less valuable ones require an extrinsic
or artificial incentives for cooperation [16]. Our concept of genuine
and artificial incentives is similar, but focuses only on the mechanism
and not the value of the resources or social network in which the
resources are exchanged.



Fig. 1. Service Maturation Taxonomy

benefit immediately in a lump sum. We have termed this
service characteristic as service maturation. A service
is mature when a node has obtained all of the benefit
that the service can provide. Services that give out all
possible benefit immediately have instantaneous matu-
ration while services that distribute benefit over time
have progressive maturation. Progressive maturation can
be further classified as bounded or unbounded based on
whether or not the service has a known, fixed termination
of benefit pay-out. The relationship between the different
classes of maturation is illustrated in Figure 1.

A content distribution service might have instanta-
neous or progressive maturation depending on policy. If
a newly joined node can completely download its de-
sired content before redistributing that content to peers,
the service has instantaneous maturation. Conversely,
BitTorrent has progressive maturation because it only
allows nodes to obtain the full content through repeated
interaction with the system. Because BitTorrent’s pay-
out of benefit ends when the file download is complete,
its progressive maturation is bounded.

An example of a service with unbounded progressive
maturation is a remote back-up service. In such a system,
the benefit payout is distributed over time without a fixed
point of termination.

There is a correlation between instantaneous matu-
ration to the Prisoner’s Dilemma (PD) and progressive
maturation to the Iterated Prisoner’s Dilemma (IPD). In
the single round PD, all of the utility that the game can
pay out is disbursed in a single interaction. In IPD, the
total utility is paid out to participants over some arbitrary
number of interactions.

IPD also has an analog to the concept of bounded
maturation. The game can be played with the players
either aware or ignorant of the number of rounds that
they will play. From the players’ perspective, the game
is bounded only if they know the number of rounds. An
IPD game degenerates into a PD game if the number of
rounds are known.

Game theoretic analysis has proven that it is not
rational to cooperate in single round PD but that it is

rational to cooperate in IPD [2]. Services with instanta-
neous maturation are extremely susceptable to the attacks
described in Section 4.2.

3.3 System Model

For convenience, we define a constrained environment
suitable to explore rational attacks. The p2p model
characterized in this section has many features that
are common to most p2p networks. In Section 5 we
break some of these assumptions as possible solutions
to rational attacks.

Our model is described by the following assumptions
and limitations.
Assumption: Secure node ID’s. Douceur [6] observes

that if identity within the p2p system is not cen-
trally controlled, any participant can simultaneously
assume a plethora of electronic personae. With many
identities at its disposal, a participant can subvert the
entire network by subverting the routing primitive.
We assume that the node ID’s in our model are made
secure in one of three ways:

Trust - Node ID creation and distribution is done
through a centralized and mutually trusted agent.

Expense - Node ID creation has some arbitrary cost
attached. A participant can replace its node ID
infrequently and with some difficulty.

Relevance - Node ID creation is unrestricted because
having multiple ID’s cannot aid the rational
attacker.

Assumption: There is no “trusted” software. A p2p
system cannot guarantee that their members are
using conforming software. Trusted computing
technologies allow a node to attest that it is running
a conforming application [15], [20]. Enforcing
a trusted software policy is not only technically
challenging, but developing and deploying such a
policy is undesirable to many groups for ethical or
practical reasons [21].

Assumption: Nodes are computationally limited. We
assume that any given node may have the same
resources as the typical desktop PC. Nodes may
subvert their machine to behave in arbitrary ways.
However nodes are assumed to be incapable of
breaking cryptographic primitives or taking global
control of the underlying network.

Due to the potential size of p2p systems and because
nodes are in mutually untrusting domains, we apply the
following limitations to our model.
Limitation: Each node maintains minimal state. A

node can only have firsthand observations about a
small fraction of the nodes in the system. Similarly



a node can only maintain state about a small number
of the nodes in the system.

Limitation: No second-hand information. Nodes can
only trust what they directly observe because there is
no inherent reason to trust an assertion by any node
about a third party. An accusation can only be trusted
if the evidence is independently believable regardless
of trust in the accuser. Such proofs usually require
the cooperation of the accused to create.

4 TAXONOMY OF RATIONAL ATTACKS

The motive for the attacks we consider are unfairly
increased access to p2p shared resources. We identify
two general classes of attack:

1) Unrecorded Misuse of Resources
2) Unpunished Misuse of Resources

Attacks can be made by a single node, or by several
nodes colluding together for an advantage.

4.1 Unrecorded Misuse of Resources

If an attacker can obtain resources without producing
a record of the misuse, the attacker is safe from any
sanctions. Attacks of this kind exploit “holes” in auditing
policies (policy attacks), or actively disrupt the auditing
mechanism (auditing attack).

4.1.1 Policy Attacks: A rational node may exploit an
auditing policy. We identify two examples.
Excuses Any legitimate “excuse” for being unable to

perform a service may be exploited. Such excuses
may be needed to deal with edge conditions includ-
ing crash recovery, network interruption, packet loss,
etc. Consider a remote backup system like Samsara
that requires every node to contribute as much space
as it consumes [5]. If the system policy is overly
generous to recovering nodes that recently crashed
by not requiring them to prove they are maintaining
their quota, a malicious node may exploit this by
repeatedly claiming to have crashed.

Picking on the newbie Some systems require that new
nodes “pay their dues” by requiring them to give
resources to the system for some period of time
before they can consume any shared resources [22],
[7]. If this policy is not carefully designed, a veteran
node could move from one newbie node to another,
leeching resources without being required to give
any resources back.

4.1.2 Auditing Attacks: Auditing attacks are designed
to prevent the auditing system from identifying misbe-
havior. These attacks only apply to designs based around
auditing using artificial incentives. Here are a number of
examples of this type of attack:

Fudged books Auditing relies on the accounting
records being tamper-resistant and difficult to forge.

Manufactured evidence In this scenario, an attacker
who is in a state of non-compliance manages to
produce “proof” of compliance deceptively.

Accounting interruption (kill the auditor) A node
being audited can attempt to interfere with the
auditing node. This might be accomplished by a
denial-of-service attack, a worm, a virus, etc.

Group deception, local honesty This attack is a type
of manufactured evidence attack through collusion.
Ngan, et al describes an accounting system where
nodes publishing their debits and credits publicly in
logs which are later audited by nodes’ peers [8].
Debts on one node must match credits on another
node, making it more difficult for a node to cook its
books. However, it is possible for single node in debt
to become locally honest for an audit by pushing its
debt to a co-conspirator. As a group, the conspiring
nodes’ books are not balanced and they are in debt
jointly. All colluding nodes reciprocate in sharing (or
hiding) the debt.

4.2 Unpunished Misuse of Resources

An identified misbehaving node may attempt to avoid
or mitigate punishment. Two such attacks are:
Elusion The attacker leaves the system permanently

before they can be sanctioned by the p2p system.
This attack generally exploits short-maturation and
high-value resources. In such a scenario, the attacker
obtains the resources and leaves (e.g., join a content
distribution service long enough to obtain an object
and then disappear forever).

Reincarnation Reincarnation is repeated elusion. The
attacker avoids punishment for misbehavior by as-
suming a new node ID thus releasing them from
any penalties associated with its old reputation. We
note that this attack is a limited form of the Sybil
attack [6] where multiple ID’s are acquired and
discarded over time rather than all at once.

This class of attacks operates almost entirely against p2p
services with instantaneous maturation.

5 SOLUTIONS

As stated previously, an ideal p2p system is perfectly
faithful, but creating such a mechanism and proving its
validity is difficult. In some cases a perfectly faithful
design may be impossible, but a p2p system need not be
perfectly faithful to be viable. In this section, we describe
defenses against rational attacks by self-interested nodes
in descending order of theoretical effectiveness.



5.1 Eliminate rationality as a concern
Under certain circumstances, forcing all nodes to be

obedient may be practical and desirable. We identify
three options for coercing obedience.
Out-of-band trust Obedience is enforced external to

the p2p system. Such a scenario might be viable
for a group of friends, or centrally administered
machines within corporations, academic institutions,
and government agencies.

Partial centralization It may be possible to introduce
some aspect of centralization that induces nodes to
be obedient. For instance a central authority can be
used to require secure node ID creation. BitTorrent
uses a central authority to act as a rendezvous point
where nodes can determine the addresses of their
peers.

Trusted software - If a user is prevented from modi-
fying their software, they must behave obediently.
Many software applications are closed-source and
difficult to modify. This may also be done with
“trusted computing” technologies [1], [20].

5.2 Design genuine incentives
Genuine incentives are always preferred to artificial

incentives. Because they are often difficult to implement
in a DAMD context, it may be tempting for a designer to
overlook them. Not only do genuine incentives eliminate
many of the attacks described in Section 4.1.2, but they
are also simpler than artificial incentives because they
require no additional enforcement mechanisms.

For example, consider a back-up system with a storage
policy similar to Samsara where each node must provide
as much disk-space as it consumes in backups. One
artificial incentives approach proposed by Fuqua, et al
is to require that all nodes publish what data they are
storing locally and to prove that they actually have
that data in their possession on audit [8]. The auditing
mechanism may be vulnerable to one or more of the
auditing attacks described in Section 4.1.

A genuine incentive for the remote back-up service
is to require that all of a node’s data that is stored on
the network be tangled with the data it is supposed to
be storing [22]. Nodes can then occasionally broadcast
portions of the tangled data they are storing and ask for
its owner to claim it or risk its deletion. Now the self-
interested node must actually keep the data it claims
to be storing or it cannot recognize claim-requests for
its own data. However, to be useful, there must be a
policy that allows a node to reclaim its data after a crash
even if it has lost all local-storage. This policy may
expose the mechanism to the excuses attack described
in Section 4.1.1. Despite this weakness, however, this

mechanism is more robust and significantly simpler than
the auditing alternative.

5.3 Improving artificial incentives design
Artificial incentives are a less desirable solution to

rational attacks, but they may be the easiest to design
into a service and are sometimes the only viable solution.
Artificial incentives will generally entail having a well-
defined auditing policy. A number of design decisions
influence the effetiveness of these incentives.

5.3.1 Eliminating instantaneous maturation: A ser-
vice which instantaneously matures is difficult to secure
against rational attacks. Once a rational node has ob-
tained the maximum benefit for a service, it has no
incentive to continue participation. Thus, services that
instantly mature are inherently vulnerable to elusion and
reincarnation attacks. Also, because a node obtains its
desired utility quickly, there is not much time for an au-
diting scheme to stop an attacker. Several techniques may
help convert instantaneous to progressive maturation:
Centralized ID Creation If node ID’s are centrally cre-

ated and distributed, a node will be forced to main-
tain its identity in all of its future interactions with
the p2p system. In this case if a node steals from the
system and leaves, it will face punishment when it
returns.

Security Deposit A node must contribute resources dur-
ing a probationary period before it can benefit from
the system’s shared resources. Tangler is an example
of system using this technique [22], [7].

5.3.2 Limited number of peers: Changing a node’s
ID incurs a cost. If an auditing system can detect and
kick out a misbehaving node sufficiently fast, then the
cost of changing identity outweighs the benefit. In most
p2p systems, a node can only access the network through
a limited number of neighbors. Once an attacker has
freeloaded on its neighbors, they will refuse to interact
with it and it will be effectively removed from the
system. This solution has been used for multicast and
storage accounting [14], [12], [13].

5.3.3 Reputation: With perfect global knowledge of
every peer’s behavior, a node would be incentivized to
cooperate because any time it cheated, that information
would be immediately available to all of its peers.
Unfortunately, perfect global knowledge is only possible
through an oracle which is not available in a DAMD
context such as p2p networks.

Distributed systems may try to recreate the notion of
a global, trusted oracle using gossip protocols, rating
schemes, or some other from of peer endorsements. Mojo
Nation had a global reputation system and EigenTrust
describes how such systems might be built [10].



5.3.4 Protecting an auditing infrastructure: Because
artificial incentives require building and protecting an au-
diting infrastructure, these mechanisms have additional
complexity that may be prone to design and implemen-
tation errors. We suggests three practices for building
effective auditing mechanisms:
Force the truth to be told Nodes can usually only be-

lieve what they observe for themselves. Secure his-
tory techniques [11], however, may be useful to
generate authenticated records of misbehavior that
are trustable by remote hosts.

Double-entry bookkeeping A double-entry bookkeep-
ing system as described earlier in Section 4.1.2.

Create a global clock When multiple nodes are being
audited, they may be able to pass debts around from
one node to the next, such that any particular node,
while it is being audited, appears to have its books
balanced. If several nodes can be simultaneously
audited at provably the same time, this may defeat
such attacks. Again, secure history techniques may
provide an approximate solution to this problem.

6 CONCLUSIONS

In this paper we explored a number of rational attacks.
While we used a narrow definition of “rational”, we feel
that this usage is justified by the unique nature of such
attacks. From our analysis, we believe that designs that
incorporate genuine incentives will generally be simpler
and more robust that those with artificial incentives.
Artificial incentives often require an auditing mechanism
that is complicated and difficult to construct.

Unfortunately, given the difficulty of designing and
implementing genuine incentives in a DAMD context
such as p2p networks, artificial incentives will often be
essential to incentivize cooperation for some parts of the
system. When this is the case, avoiding instantaneous
maturation eliminates unpunished misuse of resources
attacks. A carefully designed policy and a robust auditing
scheme are essential to mitigating unrecorded misuse of
resources.
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