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ABSTRACT
Recent studies have shown that web browsing is one of the most
prominent cellular applications. It is therefore important for cellu-
lar network operators to understand how radio network characteris-
tics (such as signal strength, handovers, load, etc.) influence users’
web browsing Quality-of-Experience (web QoE). Understanding
the relationship between web QoE and network characteristics is
a pre-requisite for cellular network operators to detect when and
where degraded network conditions actually impact web QoE. Un-
fortunately, cellular network operators do not have access to de-
tailed server-side or client-side logs to directly measure web QoE
metrics, such as abandonment rate and session length. In this pa-
per, we first devise a machine-learning-based mechanism to infer
web QoE metrics from network traces accurately. We then present
a large-scale study characterizing the impact of network charac-
teristics on web QoE using a month-long anonymized dataset col-
lected from a major cellular network provider. Our results show
that improving signal-to-noise ratio, decreasing load and reducing
handovers can improve user experience. We find that web QoE is
very sensitive to inter-radio-access-technology (IRAT) handovers.
We further find that higher radio data link rate does not necessarily
lead to better web QoE. Since many network characteristics are in-
terrelated, we also use machine learning to accurately model the in-
fluence of radio network characteristics on user experience metrics.
This model can be used by cellular network operators to prioritize
the improvement of network factors that most influence web QoE.

Categories and Subject Descriptors
C.4 [Performance and Systems]: measurement techniques, per-
formance attributes; C.2.3 [Computer System Organization]: com-
puter communication system—network operations

Keywords
Cellular Network; Quality of Experience (QoE), Web Browsing,
Performance
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1. INTRODUCTION
Mobile web data usage is predicted to increase eleven-fold be-

tween 2013 and 2018 [1], and web browsing is already one of the
most dominant applications on cellular networks [33]. Therefore,
it is important for cellular operators to ensure that web browsing
sessions provide a better Quality-of-Experience (QoE), i.e., a set of
web user experience metrics, such as session length (the number
of pages a user clicks through) and abandonment (whether a user
leaves a website after visiting the landing page), which we here-
after refer to as web QoE. The ability to monitor web QoE is essen-
tial to determining when and where degraded network conditions
actually impair user experience. Moreover, understanding the rela-
tionship between web QoE and radio factors can help troubleshoot
such conditions and help operators evaluate the inherent trade-offs
in potential solutions. For example, an operator may want to de-
cide whether to increase a cell’s transmit power to improve signal
strength, or decrease it to reduce handovers from overlapping cells.

Prior work on monitoring web QoE relies heavily on client-side
or server-side instrumentation such as browser plugins and server
logs. Past work has studied the impact of web page complexity
on user experience [18, 24], developing better browsers [28], de-
tecting inefficiencies in HTTP [30] etc. These works have led to
best practices that have helped improve website designs, browsers
and network protocols. However, the network between the website
and the user also plays a critical role in the user experience, partic-
ularly in wireless mobile networks. To complement these studies,
we take a “cellular operator view" of web QoE. Understanding web
QoE from an operator’s perspective is more challenging because,
unlike other stakeholders, network operators do not have access to
detailed client-side or server-side logs, any feedback from the end
hosts, or any a priori domain knowledge about website structure.
Hence, it is imperative for network operators to accurately estimate
QoE metrics using only network measurements.

To complicate matters, websites have evolved from serving rela-
tively static objects, such as hypertext and images, to hosting rich
mobile media applications. These sites typically deliver dynamic
and personalized content that often includes third-party content such
as advertising [18]. Such design typically involves fetching large
number of objects from multiple domains and servers. This signifi-
cant change in web page structure and content over the last decade
makes accurate estimation of web QoE metrics from mobile net-
work traces even more challenging. A key challenge is that there is
not yet a scalable and accurate method to distinguish between dif-
ferent mobile browsing sessions or to associate each HTTP trans-
action with a browsing session, by only observing flow-level net-
work traffic. Previous approaches (e.g., [24]) were designed for the
“desktop” web and fare poorly when applied to mobile websites.
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To the best of our knowledge, this paper presents the first large-
scale measurement-driven study that characterizes and models mo-
bile web QoE and relates it to the measurable radio network charac-
teristics, such as radio signal strength, handovers, data rate, etc. To
this end, we use a month-long anonymized data set collected from
a Tier-1 US-based cellular network and analyze web browsing ses-
sions of 3 leading mobile websites that consistently appear in the
top 100 [6]. For this analysis, we design mechanisms to measure
and evaluate the two key web QoE metrics that quantify user expe-
rience using only network data: session length (number of pages a
user clicks through) and abandonment rate (if a user leaves the web-
site after visting the landing page). Moreover, we show that partial
download ratio (fraction of page objects that download incomplete)
is a measure that likely captures user disatisfaction even for single-
click sessions (the majority for some websites), as it correlates well
with the other two metrics.

We make the following contributions:
• We design and evaluate a novel technique to reconstruct mobile

web sessions and detect user clicks1 from HTTP traces, and
demonstrate that it significantly outperforms current state-of-
the-art method. Our approach is based on bag-of-words and
Naive Bayes, an approach borrowed from text classification,
and extracts features from HTTP headers. It detects clicks on
mobile websites with about 20% higher recall and higher preci-
sion compared to the previous state-of-the-art [24].

• We quantify the individual impact of various network charac-
teristics on mobile web QoE in the wild, and derive actionable
findings for cellular operators. For example, we find that web
QoE is very sensitive to inter-radio-access-technology (IRAT)
handovers: most sessions with IRAT handovers were abandoned.
Somewhat surprisingly, we find that web QoE is not noticeably
influenced by the mean radio download or uplink rate (in con-
trast to mobile video QoE [32]). Moreover, higher radio signal
strength (RSSI) does not correlate with higher web QoE, sug-
gesting that web QoE is not power limited. Further, we estab-
lish which radio-level metrics are strong indicators of QoE, and
which should not be relied upon.

• We capture the complex relationships between the various net-
work parameters and user experience using intuitive and accu-
rate machine-learning models. Given only radio network char-
acteristics, which are available to network operators even with-
out traffic monitoring, our model can predict the web QoE with
accuracy as high as 84%, improving accuracy by 20% com-
pared to the obvious baseline. Network operators can use this
model to continuously monitor and improve web QoE by ad-
justing network parameters.

The rest of the paper is organized as follows. In Section 2, we
present the background and details of our data collection process.
In Section 3, we discuss related work. In Section 4 we describe
and evaluate our approach for estimating user experience metrics
from network traces. In Section 5 we present a characterization of
how different network parameters affect web browsing experience.
We develop a unified web QoE model for web browsing experience
and present our findings in Section 6. We conclude in Section 8.

2. BACKGROUND
Mobile network users care about the web experience rather than

individual network metrics such as throughput and latency. Thus,
cellular carriers have a significant interest in using their infrastruc-
ture to measure and improve web QoE rather than traditional net-
1We use the term clicks to refer to mobile “taps” as well as tradi-
tional mouse “clicks.”

work metrics, especially when there are trade-offs. To better un-
derstand the challenges in measuring web QoE, this section first
provides a brief overview of the cellular network architecture, fo-
cusing on most relevant aspects for our study, the datasets we use,
and the applications of web QoE.

2.1 Cellular Network Architecture
A Universal Mobile Telecommunication System (UMTS) is a

3rd Generation (3G) mobile data network, consisting of two major
components: a Radio Access Network (RAN) and a Core Network
(CN). The RAN includes user equipment (UE), base transceiver
stations (i.e., NodeBs), and Radio Network Controllers (RNCs).
The CN consists of Serving GPRS Support Nodes (SGSNs) and
Gateway GPRS Support Nodes (GGSNs). A UE is a mobile device
(smartphone, 3G card, etc.) that connects to the NodeB over the
radio channel.

Each base station has multiple antennas (typically 3-6), each
of which provides radio coverage for an area called a cell sector,
which has a particular frequency and other channel characteristics.
The primary cell sector is periodically selected based on the signal
strength information, while the UE maintains connections to a set
of sectors in range called the active set. The traffic to and from
the UE is sent to the corresponding NodeB, via RNC, which con-
trols multiple NodeBs, schedules transmissions, and performs all
Radio Resource Control (RRC), such as signaling, handovers, and
assignment of Radio Access Bearers (RABs).

Within the CN, an SGSN transfers data between RNC and GGSN
on behalf of the UE. A GGSN acts as a packet gateway and router
between the cellular network and external networks such as the In-
ternet. A GGSN also maintains IP connectivity between UEs and
external IP networks.

2.2 Data Collection Apparatus
Mobile operators often collect metrics derived from the traffic

that passes through network elements in order to manage the net-
work. For example, radio statistics such as RSSI and handovers
are often collected from RNCs and end-to-end throughput and la-
tency metrics are often derived from measurements in the GGSN.
This paper is interested in whether such low-level network mea-
surements can be used to measure and understand mobile web QoE.

Thus, for the purposes of this study, we simultaneously collect
two anonymized data sets, HTTP transaction records from the in-
terfaces between GGSNs and SGSNs, and radio data from a set of
RNCs. The datasets cover a major metropolitan area in the western
United States over the duration of one month in 2012.

The HTTP records contain IP flow-level information for web-
browsing sessions, and it includes items like client and server IP
addresses and TCP ports, flow duration, anonymized device identi-
fier (IMEI), bytes transfered, and TCP flags. Also included are rele-
vant HTTP headers, which include information on URL, user agent,
content type, content length, etc. The query parameters in URLs are
anonymized via hashing.The radio data contains event-level infor-
mation for each anonymized user. For example, this data includes
RRC measurement reports that periodically report the RSSI, sig-
nal to noise ratio, etc. of each UE to the RNC, handover events,
RRC throughput utilization, etc. The signal strength and through-
put measurements are reported every 2 seconds. Other measure-
ments are reported based on discrete event level data (e.g., when
a handover happens, when user connects, disconnects etc.). A full
list of events that we use is in Section 5.

Throughout this paper, our analysis focuses on three leading mo-
bile websites (News, Social, Wiki) that consistently appear in the
top 100 [6]. Our one month long HTTP trace contains informa-
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tion on 2 million web sessions to these 3 websites comprising 70
million HTTP requests and around 1 million different UEs. Our ra-
dio dataset contains complete information about 100,000 of these
sessions.

We emphasize that all the device and user identifiers are anonymized
before any analysis is conducted in order to protect privacy. In ad-
dition, the outputs of models in this paper are aggregated (e.g., per
region and/or network element), so it does not permit the reversal
of anonymization or re-identification of users.

2.3 Web QoE Applications
Mobile operators monitor network metrics for several purposes,

and the ability to monitor web QoE would complement the same
applications. First, continuous measurement of metrics permits
early detection of network problems. Monitoring web QoE would
permit operators to prioritize problems that have the most impact on
actual user experience and the understanding of how network fac-
tors influence web QoE would help troubleshooting. Second, trend-
ing network metrics is invaluable for capacity planning, as they
provide objective benchmarks to measure the relationship between
investment in infrastructure, such as base stations, and user expe-
rience. Third, cellular networks are extremely complex to man-
age and optimize, involving a huge amount of parameter tuning in
the RAN and CN. The adjustment of these parameters often in-
volve implicit trade-offs between different aspects of network per-
formance, such as average capacity vs. peak latency. Monitoring
web QoE and understanding how various network factors influence
it provide an objective way for operators to perform such parameter
optimizations.

3. RELATED WORK
Web traffic modeling: The most widely used technique to model
web traffic and identify web pages from network traces is based
on idle time [27]. It has been used extensively for characterizing
web traffic in several works [16, 34]. This approach works well
for simple static web pages. However, it does not work well for
most web pages today since they include dynamic content (shown
in Section 4). To overcome this limitation, a page detection algo-
rithm that works for dynamic content was proposed [24]. How-
ever, it only identifies clicks resulting in new web pages and does
not identify clicks within a page. We propose and evaluate a text
classification-based mechanism that has high accuracy in identify-
ing user clicks in Section 4.

Web Performance Studies: There have been several efforts made
in previous works towards improving web performance. These in-
clude developing better browsers specifically for mobile devices [28],
techniques to optimize webpages [3, 4], and detecting inefficien-
cies in HTTP [15, 30]. More recent work has characterized how
web site complexity can affect user experience [18]. Unlike these
past works, the focus of our work is on understanding the impact
of cellular radio characteristics on mobile web browsing sessions
with the aim of helping network operators make informed choices
on improving web QoE.

Performance of network protocols over cellular networks: Past
work has also looked at the performance of TCP and HTTP on LTE
network highlighting the need to develop more LTE-friendly trans-
port and application protocols [12], characterized the physical and
MAC layers in CDMA and its impact on TCP performance [10],
studied how large buffers in cellular networks cause TCP queing
delays [11]. These efforts have helped understand and improve
transport layer and application performance over cellular network,
and hence user experience indirectly. In this work understanding

the impact of transport layer protocols on user experience is not
our immediate focus—the goal of this paper is on understanding
how radio network parameters impact user experience.

Measures of web browsing user experience: User experience
studies in the past have shown that a complete page load time has
an impact on user satisfaction [17, 20, 21]. These works are pri-
marily based on controlled studies with few users, and they involve
logging page load times and user feedback using client-side instru-
mentation techniques. However, since network operators do not
have access to client-side logs, it is challenging to exactly measure
the page load time. However, in our traces we observe that large
fraction of the pages are only partially downloaded and we define
the partial download ratio metric to capture user experience. Sim-
ilarly, past work has also extensively used several metrics related
to user browsing behavior to quantify user satisfaction including
user clicks, dwell time and scrolling [23, 26]. We also use met-
rics related to user click behavior. However, since we do not have
client-side instrumentation, we are unable to capture other behavior
such as dwell time and scrolling and incorporate them in our study.
Moreover, our work takes a step forward by analyzing the impact
of radio network factors on these different user experience metrics.

QoE in other domains: Several past efforts study the impact of
network factors on user experience and user satisfaction in other
applications. Measured impact of bitrate, jitter, and delay on VoIP
call duration is used with a machine-learning approach to derive a
user satisfaction metric [13]. Past works have employed machine-
learning algorithms to develop predictive models for Internet video
user engagement [14, 32]. Radio network factors, such as signal
strength and handovers, are used to quantify their impact on video
viewing experience [32]. Our work focuses on performing a similar
analysis for mobile web browsing experience.

4. EXTRACTING USER EXPERIENCE MET-
RICS

Network operators cannot access detailed server-side or client-
side logs of user browsing patterns. Hence they need to reconstruct
web browsing sessions and estimate user experience metrics from
network traces. However, over the years, webpages have evolved
from serving relatively simple static objects such as hypertext to
serving dynamic and even personalized content. This makes it even
more challenging to reconstruct mobile web sessions and extract
user activities from network traces alone.

Previous work identified engagement as a key measure of user
experience because more satisfied users tend to stay around longer
and use an application more [13, 14, 25, 36]. For web browsing,
two central engagement metrics recognized in the web analytics
industry are session length (i.e., the number of pages a user clicks
through) and abandonment or bounce rate (i.e., if a user leaves the
website after only visiting the landing page) [19]. Unfortunately,
both of these metrics necessitate the identification of user clicks,
which is non-trivial from the perspective of an operator. The diffi-
culty comes from lack of access to client-side or server-slide logs
and HTTP records do not readily distinguish requests that are ini-
tiated automatically by the browser (e.g., embedded objects) and
those that are initiated by user activity.

In Section 4.1, we present and evaluate a novel click detection
algorithm based on machine learning, which achieves higher ac-
curacy than the best known approach. Then, in Section 4.1.2, we
extract different user experience metrics from the dataset using our
algorithm. Based on our findings, we propose partial download
ratio as a more fine-grain metric that more precisely captures user
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Figure 1: CDF of arrival time for clicks vs embedded objects

experience impairments due to network conditions, as opposed to
user interest.

4.1 Detecting Clicks

4.1.1 Limitations of Previous Techniques
The most common approach for differentiating between clicks

and embedded objects using network traces is to use the idle time
between requests [16, 27, 34]. This approach is based on the as-
sumption that the idle time for requests for embedded objects will
be extremely short since they are automatically generated by the
browser, whereas requests generated by clicks would typically have
higher idle time since they require manual intervention. Therefore,
these techniques use a pre-defined threshold and classify a request
as embedded object if and only if the idle time is shorter than the
threshold. However, we find that in modern mobile web pages, a
non-trival fraction of embedded objects have idle times as long as
many user clicks (e.g., requests generated by periodic beacons from
third-party analytic services [24]). For example, Figure 1 shows the
distribution of arrival times for next click and next embedded ob-
jects. This figure is based on web requests from around 50,000
web sessions on the three websites. We labeled each of the web
requests in these sessions as clicks or embedded objects manually.
An idle time threshold approach would select a point on the x-axis
and classify all objects to the left as embedded and those to the
right as clicks. We see that there is no idle time threshold that we
can select that achieves lower than 20% error on at least one of the
two classes.

To improve on this approach, StreamStructure [24] exploits the
structure of “desktop” web pages to detect requests for new web-
pages. However, we show in the next section that it is not as adept
at identifying clicks in mobile web pages. Moreover, it is a page
detection algorithm that is used to identify clicks resulting in new
pages. Other client-side interaction (e.g., clicking to play a video
within a page) are not identified by this algorithm.

4.1.2 Our Approach
Our approach to differentiate between clicks and embedded ob-

jects is based on our observation that most of the embedded ob-
jects are hosted by third party services such as advertising agencies,
Content Distribution Networks (CDNs) and analytics services [18].
This opens up an opportunity to distinguish embedded objects from
clicks by inspecting request URLs. For example, a request to google-
analytics.com is very likely to be an embedded object, while a re-
quest to news.google.com is very likely to be a click. Hence we can
employ text based classification algorithms that have been exten-
sively used in other domains (such as spam filtering [31] and sen-
timent analysis [22]) to classify requests. We would need to learn
the classification model separately for each website/domain. In the
remainder of the section, we explain four steps in our approach.
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Figure 2: Our approaches have higher precision and recall com-
pared to previous approaches

Step 1: Grouping Sessions: We first filter our sessions to a spe-
cific website. We only study traffic originating from web browsers,
and hence filter out traffic of native mobile apps using User Agent
HTTP header. Similar to the approach in StreamStructure [24], we
group requests into different sessions using the anonymized IMEI
and Referer header information. The IMEI information helps us
separate sessions from different devices. The Referer field iden-
tifies the address of an object from which the new request came
from. The first request in a session has an empty Referer field. The
Referer field is further used to build the request chain within a ses-
sion. It also helps us separate simultaneous requests from multiple
browser instances from the same user equipment.
Step 2: Extracting Features: In order to perform text classifica-
tion, we extract features from the requested URLs. We extract two
sets of features to represent the URLs:
• Feature simple: We extract a bag of words [29] from the domain

name. For example, the feature set for the URL
www.blog.xyz.com/my/blog/abc.html is <blog, xyz, com>.

• Feature diverse: In addition to domain name features, we in-
clude features from the URN and type of content. Hence, the
feature set for the above URL would be domain = <blog, xyz,
com>, urn = <my, blog, abc.html> and type = html.

Step 3: Automatic Labeling to Obtain Training Set: In order
to create a classification model to label the URLs as clicks and
embedded objects, we need a training set labeled with the ground
truth. To obtain the training set, we inspect only the very first 10
seconds of every web session. We assume that only the first request
during this time frame was a click and the remaining requests are
for embedded objects and collect both feature simple and feature
diverse along with the ground truth based on the assumption. We
pick 10 seconds because based on the ground truth in Figure 1,
almost all user clicks have an idle time of more than 10 seconds and
almost 80% of the embedded objects are requested with this time
frame. This automatic labeling technique enables our approach to
be applied to any website without any manual labeling or ground
truth.
Step 4: Running Classification Algorithm: We first learn the
classifier model using the training set, and then input the entire
dataset and classify each request as the click or embedded object.
After testing with multiple machine learning algorithms (such as
decision trees, logistic regression, Support Vector Machines [29]),
we found that Naive Bayes performs the best compared to other
approaches. This is not surprising given that Naive Bayes has been
found to perform the best in other text classification problems as
well [7].

4.1.3 Validation
To validate our approach, we apply it to the three web sites we

study. For each web site, we manually inspect its structure in detail

216



0 1 2 3 4 5
Session Length

0

20

40

60

80

100

C
D

F
(%

of
se

ss
io

ns
)

News
Social
Wiki

(a) Session Length

0.0 0.2 0.4 0.6 0.8 1.0
Partial Download Ratio

30

40

50

60

70

80

90

100

C
D

F
(%

of
se

ss
io

ns
)

News
Social
Wiki

(b) Partial Download Ratio

Figure 3: CDF of user experience metrics
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Figure 4: Session length decreases with increasing partial down-
load ratio

in order to label each HTTP request as either a click or a as an
embedded object. We manually label one day of trace data with
roughly 50,000 sessions.

We then compare the idle-time threshold based approach, Stream-
Structure and our approach (both using Feature simple and Feature
diverse) and then estimate the performance in terms of both preci-
sion and recall. Precision is defined as the number of correct clicks
identified by the total number of clicks identified, and recall is de-
fined as the number of correct clicks identified by the total num-
ber of clicks. Figure 2 shows the precision and recall using each
the three websites. Our Feature simple and Feature diverse have
higher recall than the previous baselines. Feature diverse has higher
precision than Feature simple because some embedded objects are
hosted on the main domain. Feature simple will incorrectly clas-
sify this object as a click since it just uses features from the domain
name. In the remainder of this paper, we hence use the Feature
diverse approach to identify clicks.

4.2 Measuring User Experience
As described earlier, session length and abandonment rate are

two important metrics that the web industry recognizes as repre-
sentative of user engagement. Our click detection algorithm pre-
sented above enables operators to estimate session length and aban-
donment rate using only HTTP traces collected from the network.
However, session length and abandonment rate are relatively coarse

engagement metrics because they are also influenced by user inter-
est, which is a confounding factor that is difficult to measure for
both network and website operators. Indeed, we find that many web
sessions are only one click (and thus, by definition, abandoned).
These metrics do little to distinguish satisfied and dissatisfied users
of these single-click sessions. In this section, we show that partial
download ratio, i.e., the fraction of HTTP objects that are not com-
pletely downloaded in a session, is strongly correlated with session
length and abandonment rate, so we can use it as a proxy to esti-
mate user experience, even for sessions lasting a single click.

To better understand the session length, abandonment rate, and
partial download ratio metrics, we extract web sessions and esti-
mate number of clicks for each session for the three different web-
sites from the entire 1 month HTTP record trace. Figure 3(a) shows
the distribution of session lengths. We observe that all sessions
have length less than 10 on all the three websites. A significant
fraction the sessions on all the three websites have a length of 1
(47% for News, 33% for Social, 67% for Wiki). The overall aban-
donment rate is 35% for the three websites. These observations
highlight the need for a user engagement metric that can highlight
network problems in sessions of length one.

One such candidate measure in common use is the web page
load time (i.e., the time it takes to load a page). However, it is
known that web page load time is difficult to measure from HTTP
traces because the traces do not capture the browser’s rendering
pipeline [35]. Moreover, without a priori knowledge of web page
structure, operators can not easily distinguish complete vs. incom-
plete page loads. Therefore, naïvely using download time to ap-
proximate page load time would incorrectly suggest that abandoned
pages have low load time.

Instead, we propose that partial download ratio is a useful proxy
metric for user engagement. Figure 4 shows the average session
length as a function of the partial download ratio. We see that there
is roughly a negative linear relationship between the partial down-
load ratio and session length, supporting our hypothesis that users
are less engaged when more objects on the page fail to load com-
pletely (or do not load completely before the user moves on). The
linear coefficient is different for each website, as website design
likely influences how much partially downloaded content effects
the user experience, but the coefficient can be easily learned us-
ing regression. For example, using a linear fit to determine session
length in terms of partial download ratio, the partial download ra-
tio co-effieceints for the News, Social, and Wiki websites are -1.6,
-2.36, -0.85 respectively. Figure 3(b) shows the distribution of par-
tial download ratios for each session. We also observe that over
60% of the sessions have objects that are partially downloaded on
each website.

Figure 5 shows the average session length, abandonment rate,
and partial download ratio by time of day. We observe strong
temporal patterns in the user engagement metrics. Lower session
lengths, higher abandonment and higher partial download ratio oc-
cur during peak hours (10 am - 6pm) compared to the rest of the
day.

Corresponding to the different linear coefficients we see in Fig-
ure 4, we observe that the web QoE metrics are different across
different websites. This is likely because, as previous work has
showed [18], user experience is dependent on factors other than
network quality, such as how mobile-friendly the website is, the
number of objects, type of objects etc.

5. ANALYZING NETWORK FACTORS
Our first goal is to understand the relationships between individ-

ual network factors and web QoE, with the end goal of building
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Figure 5: Time of day effects on the experience metrics
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Figure 6: Higher load in the cell (measured in terms of number of active users) leads to worse web QoE. Session length has higher variance
since it is a more “noisier" metric as explained in Section 4.2

models that can be used to improve web QoE by tuning various
network parameters. We first itemize all radio network factors that
we study, which may effect web QoE:
• Number of soft handovers (SOHO): A soft handover occurs

when a cell sector is added or removed from the set of cell
sectors that a UE is connected to. A SOHO is a “make-before-
break” handover in that the link to the new sector is established
before an old link is removed. From radio network data that
we collected from the RNCs, we count the total number of soft
handovers during a session.

• Number of inter-frequency handovers (IFHO): An IFHO oc-
curs when the UE switches to a cell sector that is operating on
a different frequency. An IFHO is a “break-before-make” han-
dover because a device can only listen on one frequency at a
time; thus, it must break the link with all old sectors before es-
tablishing the link with the new one. We count the number of
inter-frequency handovers during a web session.

• Number of inter-radio access technology (IRAT) handovers: An
IRAT handover happens when a UE switches between differ-
ent radio access technologies (e.g., UMTS to GPRS or EDGE).
These do not include handovers to and from WiFi since our data
collection apparatus does not capture such handovers. An IRAT
handover is also a “break-before-make” handover because the
device must disconnect entirely from the current radio network
before connecting to the new one. This process involves a sig-
nificant amount of network signaling and can take several sec-
onds.

• Number of admission control failures (ACF): We count the num-
ber of times the UE fails to complete the admission control pro-
cedure during the web browsing session. These events mostly
occur when the radio network is overloaded.

• Number of RRC failures (RRC): An RRC failure occurs if the
RNC is overloaded and it cannot allocate a request from the UE
for more radio resources. We count the number of RRC failures
within a web session.

• Average Received Signal Code Power (RSCP): This is the down-
link power received by the UE receiver on the pilot channel. It
is measured in dBm.

• Average received energy per chip of the pilot channel over the
noise power density (ECNO): It is expressed in dB and it mea-
sures how well a signal can be distinguished from the noise in a
cell. It is measured in dB. Note that ECNO is measured on the
pilot channel and thus may be different from the SINR of the
traffic channel.

• Average received Signal Strength Indicator (RSSI): Expressed
in dBm, it is the wide-band received power within the relevant
channel bandwidth. It is related to RSCP and ECNO as follows:
RSSI = RSCP - ECNO. Note that RSSI is measured on the pilot
channel and thus may be different from the received power of
the signal on the traffic channel.

• Average uplink and downlink radio data throughput: We com-
pute the average uplink and downlink data rates for the UE
when it is in active state during the web session in Kbps. Note
that the radio data rate is not equivalent to the long-term through-
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Figure 7: Higher signal energy to interference (ECNO) leads to better web QoE
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Figure 8: Surprisingly, higher received signal strength leads to
higher partial download ratio

put because it is only measured when the device is scheduled to
send/receive data (the radio link is time and code division mul-
tiplexed). The radio data rate does not count the non-scheduled
time slots in the denominator of the throughput calculation. The
number of users in active state (see below) serves as an estimate
of the number of competing flows, as a sector schedules each
user in a proportionally fair manner.

• Average number of users in active state: We measure the num-
ber of active users served by each cell at a minute-level granu-
larity. Using this information we compute the average number
of users that are served by the cell that the UE is connected to
during the web session. This is an indication of the load in the
cell.

We report the normalized the value of RSCP, ECNO, RSSI, aver-
age uplink and downlink throughput and number of users in active
state as a fraction of the mean of the metric. For example, instead of
reporting the absolute value of RSSI, we report RSSI/mean(RSSI)
and hence the plots can be read as x% above or below the average.

5.1 How network factors impact web QoE
To understand how each network factor individually affects web

QoE metrics, we plot web QoE metrics against measured values of
network factors from our radio data. The main takeaways are as
follows:

1. Higher network load results in worse web QoE. Number of
users in active state in a cell is an indication of load in the network.
As Figure 6 shows, there is a linear relationship between the load
and various web QoE metrics. For instance, adding 25% more users
than the average can increase abandonment by 2 full percentage
points. Increasing cell load also leads to lower session lengths and
higher number of partially downloaded objects on average. This
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Figure 10: The impact of soft handovers, inter-frequency han-
dovers, access control failures and RRC failures on web QoE is
minimal

relationship between load and web QoE metrics holds even when
conditioned by time-of-day, though cell load is significantly higher
during peak hours (not shown due to space constraints). The results
suggest that cellular network operators can improve web QoE by
decreasing cell load by deploying more radio cells or re-distributing
users across cells.

2. Higher signal strength (RSSI) does not necessarily corre-
late with better user experience, but higher signal energy to in-
terference (ECNO) does. As Figure 7 shows, increasing the sig-
nal energy to interference (ECNO) by 10% above average reduces
abandonment rate by about 2 percentage points, increases average
session length between 2.6% and 9.4% and improves partial down-
load ratio by 0.7 percentage points. In contrast, Figure 8 shows
that sessions with higher RSSI have higher partial download ratio
on average.

These results confirm that, similar to recent WiFi findings, ECNO
(an analogous measure to the SINR of WiFi beacons) is a better
indicator of channel quality than RSSI because RSSI does not ex-
clude the power of noise and interference. This finding suggests
that web QoE is interference and noise limited, not power (i.e.,
coverage) limited. We did not observe any impact of RSCP on user
experience metrics (not shown).

3. IRAT handovers lead to worse web QoE. IRAT handovers
had the strongest impact on user experience, as seen in Figure 9.
Sessions with IRAT handovers are much shorter than those without
IRAT handovers. Also, all sessions with more than 1 IRAT han-
dover were abandoned. The impact of other handovers (soft han-
dovers, inter-frequency handovers) and failure events (access con-
trol failure, RRC failure) on web QoE were negligible. Figure 10
shows that increasing number of such handovers and failures leads
to minimal increase in partial download ratio. This indicates high
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Figure 9: IRAT handovers have a strong impact on web QoE—all sessions with 2 handovers are abandoned.
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Figure 11: Radio data link rate does not impact partial download
ratio

robustness against these types of events, hence they should not be
used to assess web QoE and their management would likely yield
insignificant improvement.

4. Higher radio data rate does not necessarily lead to better
web QoE. Figure 11 shows the impact of radio data rate on partial
download ratio. As web objects are primarily downloaded onto the
mobile device, we start by looking at the downlink direction and
find that higher data rates do not improve partial download ratio
(Figure 11a). As expected, uplink data rate shows no impact (Fig-
ure 11b). We find similar relationship between data link rates and
other web QoE metrics (not shown). While it may not be intuitive
that data rate and web QoE metrics have weak relationship, it has
been shown that web browsing traffic is more latency-limited than
throughput-limited [5, 9].

5.2 Analysis on Other Websites
To test whether the observations we made above hold for other

websites, we analyze one day’s worth of HTTP records and ra-
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Figure 13: Time of day effect on signal strength parameters

dio data for five other leading mobile websites (Shopping, Mar-
ketplace, News2, Social News and Blog) that consistently appear in
the top 100 [6].

In Table 2, we characterize these websites based on two key met-
rics of website complexity that past work has identified [18]—
namely, (1) the average number of objects requested per click and
(2) the average number of domains from which requests are served.
We found that these websites represent a varied range both for
complexity and for user behavior. For example, News, News2, So-
cial and Blog have the highest complexity these metrics, whereas

# IRAT handovers Normalized ECNO Normalized RSSI
0 -1.09 -0.97
1 -1.53 -1.15
2 -1.84 -1.21

Table 1: We observed lower average ECNO and RSSI for sessions
with IRAT handovers
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Shopping and Marketplace are less complex. Moreover, users tend
to have different browsing behavior on these websites: Shopping,
Marketplace, and Social News sites understandably tend to have
higher session lengths, while Wiki and Blog tend to have low ses-
sion lengths.

Table 2 shows that our result hold for this varied set by correlat-
ing the impact of increasing each of the radio network factors on
partial download ratio. For each radio network factor (e.g., RSSI,
ECNO, etc.), we tabulate the slope of the partial download ratio vs.
the network factor. For each of RSSI, ECNO, # IRAT handovers
and # Users, the partial download ratio graphs exhibit the same
trend on increasing the radio network factor even across the varied
set of websites. For example, increasing ECNO decreases partial
download ratio (i.e., negative slope across all sites).

5.3 Comparison with Other Mobile Applica-
tions

Our findings that higher load (in number of users) and lower sig-
nal to noise ratio (ECNO) correlate with lower web QoE is not en-
tirely surprising and confirms previous findings on the relationship
between these network factors and QoE of mobile video stream-
ing [32]. Interestingly, as in the case of video streaming, the rela-
tionship between these two network factors and abandonment rate
are both linear and have roughly the same slope.

In contrast to findings on video streaming, however, we observed
that only IRAT handovers were disruptive to web QoE and that
web QoE metrics were uncorrelated with SOHOs and IFHOs. This
finding suggests that web browsing is more tolerant to minor han-
dover disruptions than video streaming. IRAT handovers are much
more disruptive because changing radio technologies can take sev-
eral seconds to complete, which is long enough to influence user
perceived latency. Moreover, we find that, unlike mobile video
streaming, the radio data rate is uncorrelated with web QoE met-
rics. This may be because video streaming is a more bandwidth
intensive application, whereas web browsing is more sensitive to
latency.

In summary, our findings complement previous work on cellular
mobile video [32], demonstrating that reducing load and improving
ECNO are equally important for both applications. However, carri-
ers need not optimize handovers (except IRAT) or radio throughput
rates if they only want to improve web QoE.

5.4 Dependencies and Other Factors
We found that many network factors under study are not inde-

pendent of each other. An obvious example is that RSSI is related
to ECNO and RSCP (as we mentioned earlier). We also found sev-
eral other dependencies between the radio network factors. Some
examples are:
• The number of users in active state in a cell and ECNO are

dependent on each other [8]. As shown in Figure 12, there is
a linear relationship between the two—adding more users into
the cell steadily decreases ECNO.

• Table 1 shows that sessions that experience IRAT handovers
also experience lower signal strength (RSSI) and lower signal
energy to interference (ECNO).

Further analyzing the radio network factors, we also observed
significant time of day effects. Figure 13 shows the average value
of RSSI and ECNO observed per hour of the day over the entire
one month dataset. We observe that average signal strength to in-
terference (ECNO) is lower during peak hours compared to non-
peak hours. On the other hand, average signal strength (RSSI) is
higher during peak hours compared to non-peak hours. In Sec-

Model Avg. Accuracy (%)
Radio factors alone 73.02

Radio factors + time of day 79.25
Radio factors + time of day + website 83.95

Table 3: Adding time of day and learning a separate decision tree
for each website improves accuracy.

tion 4, we also observed strong temporal effects on the various user
experience metrics (Figure 5). These could also be caused by exter-
nal factors/reasons—for example, users are less likely to engage in
long browsing sessions during working hours pointing to the need
for including external factors such as time of day into the analysis.

In summary, complex interdependencies between network fac-
tors as well as external factors (e.g. time of day) make it very
challenging to understand and quantify the true impact of each net-
work factor using correlation analysis. This points to the need to
use more systematic techniques, including machine learning algo-
rithms, to capture the complex relationships in order to quantify the
impact of network factors.

6. MODELING WEB QOE
Our end goal is to develop models that can be used by cellular

network operators to improve web QoE by tuning network param-
eters. For example, our model should help answer the question
“how much can we improve the partial download ratio if we in-
crease ECNO by 1 dB?". The model should also help network
operators monitor web QoE metrics using only radio network char-
acteristics. To achieve this goal, the QoE models that we build
should be intuitive, accurate, and must be able to predict web QoE
from network factors alone.

Building an accurate QoE model is challenging because of the
complex relationships between network factors and web QoE met-
rics, interdependencies between various network factors, and also
due to external factors (e.g., differences between websites, time of
day effects). To tackle these challenges, we use machine learning to
capture the dependencies and relationships, and develop and evalu-
ate models that can predict web QoE metrics. The model we derive
will express web QoE metrics as a function of radio parameters;
specifically, we wish to capture the relationship:

WebQoE = f(RadioNetworkParameter1..n)

where WebQoE denotes one of the user experience metrics (par-
tial download ratio, abandonment, or session length), and
RadioNetworkParameteri denotes the ith observed radio net-
work parameter listed in Section 5.

6.1 Evaluation
We predict: (1) partial download ratio, (2) session length, (3)

if the session includes partially downloaded pages or not (part or
full), and (4) if the user will abandon a session or not (abandoned or
not-abandoned). The choice of the machine learning algorithm is
important because the model it learns should be expressive enough
to capture all the complex relationships and dependencies. After
experimenting with different regression, tree and bayes algorithms
(such as linear and logistic regression, variations of decision trees
and naive Bayes) we found that linear regression worked best for
(1) and (2), and C4.5 decision tree algorithm was able to predict the
binary classification most accurately for tasks (3) and (4). We use
10-fold cross-validation to evaluate all our models [29].

Evaluating Linear Regression Models: Since most network fac-
tors have a linear relationship with web QoE metrics (session length
and partial download ratio) and since they are linearly dependent on
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Website complexity Average webQoE Impact of increasing radio factor on
Partial Download Ratio (P.D.R.)

Website # Domains # Objects Average
P.D.R

Average
Session
Length

Abandon
Rate (%)

RSSI ECNO # IRAT # Users

News 13.4 23.1 0.1 2.2 21 0.0006 -0.007 0.15 0.0004
Social 13.1 20.2 0.15 3.1 23 0.0004 -0.004 0.06 0.0003
Wiki 3.69 13.31 0.16 1.8 41 0.0011 -0.005 0.18 0.0003

Shopping 4.6 7.5 0.12 8.5 10 0.0015 -0.004 0.07 0.0003
Marketplace 3.2 3.6 0.04 12.3 5 0.0007 -0.001 0.06 0.0002

News2 15.7 29.9 0.09 3.4 15 0.0010 -0.008 0.17 0.0004
Social News 11.65 7.38 0.03 10.9 8 0.002 -0.005 0.12 0.0003

Blog 11.89 20.40 0.17 2.65 30 0.0003 -0.009 0.19 0.0005

Table 2: Observations made in Section 5.1 hold for a varied set of websites
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Figure 14: Learning a separate regression models for each website
and time of day (peak/non-peak) improves accuracy.
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Figure 15: Our models are more accurate than the baseline in pre-
dicting partial download ratio.

each other (Section 4), linear regression is well-suited for captur-
ing these relationships. To measure the “goodness-of-fit” of linear
regression, we use the standard measure of root mean squared error
(RMSE), where lower RMSE values indicate better prediction. Fig-
ure 14 shows RMSE when using linear regression to predict partial
download ratio. We show the results for each website separately on
the x-axis, as well as the results for data from all web sites taken
together (“All”). The three bars in each cluster represent RMSE for
the entire day, for peak hours only, and for non-peak hours only—
each of these have separately learned models due to significant time
of day effects. We see that separate models for time of day and in-

Partial Abandonment
Dataset Model Baseline Model Baseline
News 80.4 59.7 78.6 75.6
Social 87.7 72.5 82.0 78.6
Wiki 80.6 70.3 62.3 53.3

Table 4: Our models are more accurate than the baseline in pre-
dicting partial downloads and abandonment.

dividual web sites results in significant prediction improvement, as
indicated by lower RMSE values.

We repeated these experiments for session length and found sim-
ilar improvements from splitting data and learning models for each
split (not shown). Hence, our final linear regression models for
both partial download ratio and session length are each a collection
of six linear regression models: one each for each combination of
web site (News, Social, Wiki) and time of day (Peak, Non-peak).

We compare the performance of our models with a baseline model
that always predicts the mean (using the ZeroR classifier [2]) for the
particular dataset in Figure 15. In the case of partial download ratio,
our model has around 20% lower RMSE compared to the baseline.
For session length, our model has up to 10% lower RMSE. Predict-
ing session length is not as accurate as predicting partial download
ratio because session length is more affected by external confound-
ing factors (e.g. user interest), which are very difficult to capture
from network traces.

Evaluating Decision Tree Models: We also develop models that
make binary predictions for users’ web sessions, such as “will this
session have partially downloaded pages?" and “will the user aban-
don this session?". The C4.5 decision tree algorithm performed
the best in predicting both these classifications. Table 3 shows the
accuracy for predicting partial downloads. Refining the model by
inputting the time of day (in terms of hour of day (0-23)) along
with learning a separate model for each website led to around 11%
improvement in accuracy. We observed this for the decision tree
that predicts abandonment as well. Essentially, our models for pre-
dicting abandonment and partial downloads are both a collection
of 3 decision trees, one for each website. They take both the radio
factors as well as time of day as input.

Further, we compared our model against a baseline model that
predicts the majority class using the ZeroR classifier [2] for each
dataset in Table 4. Our partial download model achieves up to 20%
higher accuracy compared to the baseline while our abandonment
model achieves up to 10% more accuracy. Again, smaller improve-
ment for abandonment is due to confounding factors like user in-
terest that we cannot measure, but can significantly influence user
abandonment.

6.2 Insights and Discussion
Fortunately, both linear regression and decision tree algorithms

that gave the highest accuracy also generate very intuitive models.
They can hence provide insights to network operators towards tun-
ing network factors to improve web QoE. For example, Table 5
shows the regression co-efficients for our partial download ratio
model. We observe that the features that the models learnt (number
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Dataset # active users RSSI (dBm) ECNO (dB) # SOHO # IRAT Constant
News Nonpeak 0.0002 0.0005 -0.0043 0 0 0.0411

News Peak 0.0002 0 -0.0032 0 0 0.0976
Social Nonpeak 0.0002 0.0005 -0.0037 -0.0007 0.0639 0.0485

Social Peak 0.0002 0.0005 -0.0047 -0.0005 0.0627 0.1367
Wiki Nonpeak 0.0002 0.0003 -0.0042 -0.0005 0.0871 0.0848

Wiki Peak 0.0002 0.0004 -0.0037 -0.0004 0.0799 0.2022

Table 5: Linear regression coefficients of the model that predicts partial download ratio.

Figure 16: Pruned decision tree that predicts partial downloads

of users, ECNO, RSSI etc.) are the same as those that we found to
be impactful in Section 5. Moreover, the model also ignores factors
such as downlink and uplink throughput that we found to not have
an impact on web QoE metrics.

Interestingly, the value of the regression co-efficients are similar
across the different datasets. This implies that irrespective of the
time of day and the website, tuning a particular network parameter
has the same impact on partial download ratio. For example, im-
proving ECNO by 1 dB decreases partial download ratio by roughly
0.004 across all times of day and websites. Network operators can
hence use this model to understand the true impact of a parameter.
For example, comparing the co-efficients, decreasing IRAT han-
dovers and improving ECNO has the highest impact on improving
partial download ratio. We also found similar conclusions from an-
alyzing the regression co-efficients for session length (not shown
due to space constraints).

Figure 16 shows the pruned decision tree that we learnt for pre-
dicting partial download for the Wiki website. Again, consistent
with our analysis in Section 5, the model picks parameters such as
Number of users, ECNO, IRAT etc. to branch on, reconfirming the
impact of these factors. Further, the decision tree rules separate the
data based on time of day into a similar classification that we made
for peak vs. non-peak (e.g., Time of day <= 9, Time of day > 9
and Time of day <= 19, Time of day > 19). We also observe that
the feature splits conform with several of our observations. For ex-
ample, during non-peak hours the partial downloads are lower (if
Time of day > 21, predict full). Also if load is higher partial down-
loads are higher (if Normalized Num User <= 1.05, predict full
otherwise part).

7. DISCUSSION
Other websites and native apps: In this paper, we developed and
analyzed QoE models primarily for three different websites. How-
ever, preliminary analysis in Section 5.2 indicates that the general
observations also hold for other websites with different complexi-
ties. We also found that (1) the same machine learning algorithms
(decision trees and linear regression) performed the best across dif-

ferent websites, (2) the model parameters are similar across web-
sites, and (3) the ordering of the importance of network parameters
is the same across different websites. Furthermore, our method-
ology is completely automated and can be easily applied to other
websites. In this paper we focused on traffic from web browsers by
filtering based on the User Agent string; this analysis does not in-
clude traffic from native mobile apps, and applying our techniques
to this type of traffic is an interesting direction for future work.
New technologies: Our study is based on traffic collected from a
UMTS network. However, we expect our methodology and results
to generally apply to newer technologies such as 4G Long Term
Evolution (LTE). Radio network parameters in UMTS have analo-
gous parameters in LTE. For example, the number of users in active
state in UMTS is related to the number of users in CONNECTED
state in LTE. Similarly, number of RRC failures in LTE is related
to the number of RRC failures in UMTS. We observed that the
number of IRAT handovers has the highest impact on user experi-
ence. This for instance might have a lesser impact when switching
between UMTS and LTE since the handovers are expected to com-
plete faster. Similarly since web browsing is more latency-limited
than throughput-limited, higher throughput offered by LTE may not
have a significant impact on web QoE.
Encrypted traffic: Our click detection algorithm uses URL to
classify if a web request is a click or an embedded object. With
SSL/TLS traffic, the entire user payload including HTTP URL is
encrypted and hence we cannot apply the current methodology.
However, a network operator can still identify the domain to which
an encrypted web request is sent by correlating the IP address of
the web request from DNS server logs—the IP address will likely
correspond to a prior DNS request/reply pair. Our click detection
technique can be tailored to use this information in the future. Also,
encryption would not affect our QoE prediction methodology, since
it is based on radio statistics and completely independent of traffic
encryption.
Limitations: One of the main constraints faced by a network op-
erator is the lack of client-side instrumentation. This makes it diffi-
cult to differentiate between the abandonment caused by the lack of
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user interest from the ones caused by network issues. For example,
a user could potentially have abandoned the session due to lack of
interest, and yet the network would have delivered all the data. It
is impossible to identify such a situation from network logs alone.
Similarly, network operators cannot identify cellular-to-WiFi han-
dovers from cellular network traces alone, and would mistakingly
mark such handovers as abandonments. Nonetheless, operators are
typically interested in aggregate performance trends and changes
that signify network issues or improvements. A few false positives
or negatives introduced by these limitations are unlikely to signifi-
cantly alter the behavior of aggregate metrics.

8. CONCLUSION
In this paper, we presented a large-scale study that analyzed web

QoE, such as session length, abandonment rate and partial down-
load ratio, from a “cellular network operator" point of view. Un-
derstanding web QoE from a network operator perspective is chal-
lenging due to lack of visibility or instrumentation at clients and
servers and a priori knowledge of web site structure. We devel-
oped and evaluated text-classification-based mechanisms to extract
mobile web browsing sessions and accurately estimate various web
QoE metrics from network traces. Our classification approach has
20% higher precision than previous state-of-the-art. Further, we an-
alyzed the impact of various radio network factors on web QoE. We
observed that web QoE is particularly sensitive to IRAT handovers,
ECNO and load in the cell. Moreover, we identified radio metrics
that are often considered important, but show negligible impact on
web QoE, such as average radio link data rate, soft handovers, and
inter-frequency handovers. Finally, we developed accurate and in-
tuitive machine learning models that can predict various web QoE
metrics from network factors alone. Our models can be used by
network operators to monitor web QoE using standard radio net-
work metrics alone and prioritize improvement of network factors
that have the highest impact.
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