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ABSTRACT 
The explosive increase in the volume and variety of Internet 
traffic has placed a growing emphasis on congestion control and 
fairness in Interact routers. Approaches to the problem of 
congestion, such as active queue management schemes like 
Random Early Detection (RED) use congestion avoidance 
techniques and are successful with TCP flows. Approaches to the 
problem of fairness, such as Fair Random Early Drop (FRED), 
keep per-flow state and punish misbehaved, non-TCP flows. 
Unfortunately, these punishment mechanisms also result in a 
significant performance drop for multimedia flows that use flow 
control. We extend Class-Based Threshold (CBT) [12], and 
propose a new active queue management mechanism as an 
extension to RED called Dynamic Class-Based Threshold (13- 
CBT) to improve multimedia performance on the Internet. Also, 
as an effort to reduce multimedia jitter, we propose a lightweight 
packet scheduling called Cut-In Packet Scheduling (CHIPS) as an 
alternative to FIFO packet scheduling. The performance of our 
proposed mechanisms is measured, analyzed and compared with 
other mechanisms (RED and CBT) in terms of throughput, 
fairness and multimedia jitter through simulation using NS. The 
study shows that D-CBT improves fairness among different 
classes of flows and CHIPS improves multimedia jitter without 
degrading fairness. 
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1. INTRODUCTION 
The Internet has moved from a data communication network for a 
few privileged professions to an essential part of public life 
similar to the public telephone networks, while assuming the role 
of the underlying communication network for multimedia 
applications such as lnternet phone, video conferencing and video 
on demand (VOD). As a consequence, the volume of traffic and 
the number of simultaneous active flows that an lntemet router 
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handles has increased dramatically, placing new emphasis on 
congestion control and traffic fairness. Complicating traditional 
congestion control is the presence of multimedia traffic that has 
strict timing constraints, specifically delay constraints and 
variance in delay, or jitter constraints [3,11]. This paper presents 
a router queue management mechanism that addresses the 
problem of congestion and fairness, and improves multimedia 
performance on the Internet. Figure I shows some of the current 
and the proposed router queue mechanisms. 

Figure 1. Router Queue Mechanisms (shaded are proposed) 

There have been two major approaches suggested to handle 
congestion by means other than traditional drop-tail FIFO 
queuing. The first approach uses packet or link scheduling on 
multiple logical or physical queues to explicitly reserve and 
allocate output bandwidth to each class of traffic, where a class 
can be a single flow or a group of similar flows. This is the basic 
idea of various Fair Queuing (FQ) disciplines such as DRR [13] 
and the Class-Based Queuing (CBQ) algorithm [7]. When 
coupled with admission control, the mechanism not only suggests 
a solution to the problem of congestion but also offers potential 
performance guarantees for the multimedia traffic class. 
However, this explicit resource reservation approach would 
change the "best effort" nature of the current Internet, and the 
fairness definition of the traditional Internet may no longer be 
preserved. Adopting this mechanism would require a change in 
the network management and billing practices. Also, the 
algorithmic complexity and state requirements of scheduling make 
its deployment difficult [12]. 

The second approach, called Active Queue Management, uses 
advanced packet queuing disciplines other than traditional FIFO 
drop-tail queuing on an outbound queue of a router to actively 
handle (or avoid) congestion with the help of cooperative traffic 
sources. In the Internet, TCP recognizes packet loss as an 
indicator of network congestion, and its back-off algorithm 
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reduces transmission load when network congestion is detected 
[4]. One of the earliest and well-known active queue management 
mechanism is Random Early Detection (RED), which prevents 
congestion through monitoring outbound buffers to detect 
impending congestion, and randomly chooses and notifies senders 
of network congestion so that they can reduce their transmission 
rate [6]. While fairly handling congestion for TCP flows, RED 
reveals the critical problem that non-TCP flows that are 
unresponsive or have greedier flow-control mechanisms than TCP 
can take more share of the output bandwidth than TCP flows 
[10,12]. In the worst case, it is possible for non-TCP flows, 
especially for unresponsive ones, to monopolize the output 
bandwidth while TCP connections are forced to transmit at their 
minimum rates. This unfairness occurs because non-TCP flows 
reduce transmission load relatively less than TCP flows or do not 
reduce at all, and the same drop rate is applied to every flow. 

This unfairness could be a serious problem in a near future as the 
number of Internet multimedia flows increases. Delay sensitive 
multimedia applications typically use UDP rather than TCP 
because they require in-time packet delivery and can tolerate some 
loss, rather than the guaranteed packet delivery with potentially 
large end-to-end delay that TCP produces. Also, they prefer the 
periodic packet transmission characteristics of UDP rather than 
the bursty packet transmission characteristics of TCP that can 
introduce higher receiver side jitter. Multimedia UDP applications 
either do not use any flow-control mechanism or use their own 
application-level flow control mechanisms that are rate-based 
rather than window based and hence tend to be greedier than that 
of TCP taking the multimedia Quality of Service (QoS) 
requirements into account. 

In addressing the problem of fairness, there have been strong 
arguments that unresponsive or misbehaving flows should be 
penalized to protect well-behaved TCP flows I [5]. Fair Random 
Early Drop (FRED) is an active queue management approach that 
incorporates this argument [10]. FRED adds per-active-flow 
accounting to RED, isolating each flow from the effects of others. 
It enforces fairness in terms of output buffer space by strictly 
penalizing unresponsive or misbehaving flows to have an equal 
fair share while assuring packets from flows that do not consume 
their fair share are transmitted without loss. FRED achieves its 
purpose not only in protecting TCP flows from unresponsive and 
misbehaving flows but also in protecting fragile TCP connections 
from robust TCP connections. However, FRED has a potential 
problem that its TCP favored per-flow punishment could 
unnecessarily discourage flow-controlled interactive multimedia 
flows. Under FRED, incoming packets for a well-behaved TCP 
flow consuming more than their fair share are randomly dropped 
applying RED's drop rate. However, once a flow, although flow- 
controlled, is marked as a non-TCP friendly flow, it is regarded as 
an unresponsive flow and all incoming packets of the flow are 
dropped when it is using more than its fair share. As a result, a 
flow-controlled multimedia UDP flow, which may have a higher 
chance to be marked, will experience more packet loss than a TCP 
flow and be forced to have less than its fair share of bandwidth. 

i A well-behaved flow (or TCP friendly) is defined as a flow that 
behaves like a TCP flow with a correct congestion avoidance 
implementation. A flow-controlled flow that acts different (or 
greedier) than weU-behaved flow is a misbehaving flow. 

Another major concern with FRED is that the per-active-flow 
accounting is expensive and might not scale well. 

Core-Stateless Fair Queueing (CSFQ) [14] addresses the 
scalability problem by deploying hierarchical distribution of the 
per-flow accounting workload. In CSFQ, edge routers are 
distinguished from core routers, where edge routers calculate per- 
flow state information in terms of rate estimates and label 
outgoing packets, and core routers use the rate estimates to 
achieve fair allocation of the output bandwidth without 
maintaining per-flow states. The accuracy of CSFQ relies heavily 
on the assumption that all packets from a flow travel along the 
same path. 

Jeffay et aL, [12] propose a new active queue management 
scheme called Class-Based Threshold (CBT), which releases UDP 
flows from strict per-flow punishment while protecting TCP flows 
by adding a simple class-based static bandwidth reservation 
mechanism to RED. In fact, CBT implements an explicit resource 
reservation feature of CBQ on a single queue that is fully or 
partially managed by RED without using packet scheduling. 
Instead, it uses class thresholds that determine ratios between the 
number of queue elements that each class may use during 
congestion. CBT defines three classes: tagged (multimedia) UDP 2, 
untagged (other) UDP and TCP. For each of the two UDP classes, 
CBT assigns a pre-determined static threshold and maintains a 
weighted-average number of enqueued packets that belong to the 
class, and drops the incoming class' packets when the class 
average exceeds the class threshold. By applying a threshold test 
to each UDP class, CBT protects TCP flows from unresponsive or 
misbehaving UDP flows, and also protects multimedia UDP flows 
from the effect of other UDP flows. CBT avoids congestion as 
well as RED, has less overhead and improves multimedia 
throughput and packet drop rates compared to FRED. However, 
as in the case of CBQ, the static resource reservation mechanism 
of CBT could result in poor performance for rapidly changing 
traffic mixes and is arguably unfair since it changes the best effort 
nature of the Internet. 

To eliminate the limitations due to the explicit resource 
reservation of CBT while preserving its good features from class- 
based isolation, we propose Dynamic-CBT (D-CBT). D-CBT 
fairly allocates the bandwidth of a congested link to the traffic 
classes by dynamically assigning the UDP thresholds such that the 
sum of the fair share of flows in each class is assigned to the class 
at any given time. In addition, as a means to improve multimedia 
jitter, we propose a lightweight multimedia-favored packet 
scheduling mechanism, Cut-In Packet Scheduling (CHIPS), as an 
alternative to FIFO packet scheduling under D-CBT and possibly 
under other RED like active queue management mechanisms. 
CHIPS monitors average enqueue rates of tagged and the other 
flows, and is invoked when the tagged flows are using a relatively 
smaller fraction of bandwidth than the TCP flows. On transient 
congestion in which the queue length is greater than the average 
queue length, CHIPS awards weU-behaved (flow-controlled) 
multimedia flows by allowing their packets to "cut" in the queue 
to the average queue length. 

2 Tagged (multimedia) UDP flows can be distinguished from other 
(untagged) UDP flows by setting an unused bit of the Type of 
Service field in the IP header (Version 4). 
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To evaluate the proposed mechanisms, we use an event driven 
network simulator called NS (version 2) that simulates a variety of 
IP networks [15]. NS implements most of the common IP 
network components including RED. We implement CBT in NS, 
extend it to D-CBT, add CHIPS into D-CBT, and compare the 
performance of D-CBT and D-CBT with CHIPS with that of RED 
and CBT. In the evaluation, our primary focus is on the effect of 
heterogeneously flow-controlled traffic on the behavior of the 
queue management mechanisms especially on fairness, and the 
effect of queue management on the performance of well-behaved 
(flow-controUed) multimedia flows. 

2.  P R O P O S E D  M E C H A N I S M S  
This section presents the design and implementation of Dynamic- 
CBT (D-CBT) and Cut-In Packet Scheduling (CHIPS) in detail. 
Before describing D-CBT and ChiPS, we present the design of 
Class-Based Threshold (CBT) [12] which D-CBT extends. As 
discussed briefly in Section 1, the main idea behind the design of 
CBT is to apply class-based isolation on a single queue that is 
fully or partially managed by RED without using packet 
scheduling. Instead of using packet scheduling on multiple 
logical queues, CBT regulates congestion-time output bandwidth 
for n classes of flows using a RED queue management mechanism 
and a threshold for each of the n-1 classes of flows, which is the 
average number of queue units that a class may use. The 
conceptual view of the first CBT design is shown in Figure 2. 
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Figure 2. CBT (with RED for all) Conceptual View 

CBT categorizes flows into three classes, which are TCP, tagged 
(multimedia) UDP and untagged (other) UDP, and assigns a pre- 
determined static threshold for each of the two UDP classes, 
assuming that UDP flows are mostly unresponsive or misbehaving 
and need to be regulated. When a UDP packet arrives, the 
weighted-average for the appropriate class is updated and 
compared against the threshold for the class to decide whether to 
drop the packet before passing it to the RED algorithm~ For the 
TCP class, CBT does not apply a threshold test but directly passes 
incoming packets to the RED test unit. This is the first design of 
CBT, called "CBT with RED for all". In the second design, 
called "CBT with RED for TCP", only TCP packets are subjected 
to RED's early drop test, and UDP packets that survive a 
threshold test are directly enqueued to the outbound queue that is 
managed by RED. Another difference from the first design is that 
RED's average queue size is calculated only using the number of 
enqueued TCP packets. CBT with RED for TCP is based on the 
assumption that tagged (multimedia) UDP flows as well as 
untagged (other) UDP flows are mostly unresponsive, and it is of 

no use to notify these traffic sources of congestion earlier. D-CBT 
is extended from CBT with RED for all. In the rest of this paper, 
CBT refers to CBT with RED for all. 

2 . 1  D y n a m i c - C B T  (D-CBT)  
D-CBT enforces fairness among classes of flows, and gives UDP 
classes better queuing resource utilization. Figure 3 shows the 
design of D-CBT. The key difference fi'om CBT is (1) the 
dynamically moving fair thresholds and (2) the UDP class 
threshold test that actively monitors and responds to RED 
indicated congestion. To be more specific, by dynamically 
assigning the UDP thresholds such that the sum of the fair average 
queue resource share of flows in each class 3 is assigned to the 
class at any given time, D-CBT fairly allocates the bandwidth of a 
congested link to the traffic classes. Also, the threshold test units, 
which are activated when RED declares impending congestion 
O.e. red_avg > red_rain), coupled with the fair class thresholds, 
allow the UDP classes to use the available queue resources more 
effectively than in CBT, in which each UDP class uses the queue 
elements an average of no more than its fixed threshold at any 
time. Looking at it from a different view, D-CBT can be thought 
of a Class-Based FRED-like mechanism that does per-class- 
accounting on the three classes of flows. 

As in CBT, D-CBT categorizes flows into TCP, tagged UDP and 
untagged UDP classes. However, unlike the class categorization 
of CBT in which flow-controlled multimedia flows are not 
distinguished from unresponsive multimedia flows (all tagged), 
D-CBT classifies UDP flows into flow-controlled multimedia 
(tagged) UDP and other (untagged) UDP. The objective behind 
this classification is to protect flow-controlled multimedia flows 
from unresponsive multimedia flows, and encourage multimedia 
applications to use congestion avoidance mechanisms, which may 
be different than those of TCP. We believe that there are 
advantages in categorizing UDP traffic in this way for the 
following reasons: first, multimedia applications are the primary 
flows that use high bandwidth UDP; second, by categorizing 
flows by their congestion responsiveness characteristic (i.e. TCP 
friendly, flow-controlled but misbehaving multimedia and 
unresponsive flows), different management can be applied to the 
classes of differently flow-controlled flows. 
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Figure 3. Design of Dy.amle-CBT (D-CBT) 

3 Fair class shares are calculated based on the ratio between the 
number of active flows in each class. 
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In fact, in determining the fair UDP thresholds, D-CBT calculates 
the fair average output buffer share of the tagged UDP class from 
the average queue length that is maintained by RED, and that of 
untagged UDP class from the RED's minimum threshold (plus a 
small allowance). This is based on the assumption that tagged 
flows (or flow-controlled multimedia) can respond to network 
congestion and will actively try to lower the average length of a 
congested queue on notification of congestion. Therefore, they 
are allowed to use the impending congestion state queue buffers 
(i.e. red_avg - red..min when red_avg > red min) up to their fair 
share of the average. However, unresponsive (untagged) flows, 
which have no ability to respond to network congestion, are not 
allowed to use the impending state queue buffers at impending 
congestion. Actually, we allow the unresponsive UDP class to 
use a small fraction of the impending state queue buffers, which is 
10% of (red_max - red_rain) * untagged_UDP._share when the 
maximum early drop rate is 0.1, to compensate for the effect of 
needless additional early drops for the class. 

In the design of D-CBT, the existence of the active flow counting 
unit is a big structural difference from CBT. In order to calculate 
a fair threshold (or average queue resource share) for each class, 
D-CBT needs class state information, and therefore keeps track of 
the number of active flows in each class. Generally, as in FRED, 
active flows are defined as ones whose packets are in the 
outbound queue [10]. However, we took slightly different 
approach in detecting active flows, in that an active flow is one 
whose packet has entered the outbound queue unit during a 
certain predefined interval since the last time checked. In D-CBT, 
an active flow counting unit that comes right after the classifier 
maintains a sorted linked list, which contains a flow descriptor 
and its last packet reception time, and a flow counter for each 
class. Currently, the flow descriptor consists of a destination IP 
address and the flow ID (IPv6). However, assuming Ipv4, this 
could be replaced by source and destination address, although this 
would redefine a flow as per source-destination pair. 

For an incoming packet after the classification, the counting unit 
updates an appropriate data structure by inserting or updating the 
flow information and the current local time. When inserting new 
flow information, the flow counter of the class is also increased by 
one. The counting unit, at a given interval (set to 300ms in our 
implementation), traverses each class' linked list, deletes the old 
flow information and decreases the flow counter. The objective 
behind this probabilistic active flow counting approach is 
twofold: First, D-CBT does not necessarily require an exact count 
of active flows as do other queue mechanisms that are based on 
flow-based-accounting, although a more exact count is better for 
exercising fairness among flow classes. Second, it might be 
possible to improve the mechanism's packet processing delay by 
localizing the counting unit with the help of router's operating 
system and/or device. For example, the traversing delete is a 
garbage collection-like operation that could be performed during 
the router's idle time or possibly processed by a dedicated 
processor in a multiprocessor environment. In our simulator 
implementation, we used a sorted linked list data structure that has 
inserting and updating complexity of O(n), and traversing 
complexity of O(n), where n is the number of flows of a class. 
Assuming that a simple hash table is used instead, the complexity 
of inserting and updating operation drops to 0(1), while the 
complexity of the traverse delete will remain O(n). Future work 
suggests more thorough measurement of added overhead. 

When an incoming packet is updated or inserted according to its 
flow identification to its class data structure at the counting unit, 
D-CBT updates the RED queue average, the tagged UDP average 
and the untagged UDP average, and passes the packet to an 
appropriate test unit as shown in Figure 3. Note that for every 
incoming packet all of the averages are updated using the same 
weight. This is to apply the same updating ratio to the weighted- 
averages, so that a snapshot in time at any state gives the correct 
average usage ratio among the classes. Using the three averages 
and the active flow count for each class, the UDP threshold test 
units calculate the fair thresholds for the tagged and untagged 
UDP classes, and apply the threshold test to incoming packets of 
the class when the RED queue indicates impending congestion. 
UDP packets that survive an appropriate threshold test are passed 
to the RED unit along with the TCP flows as in CBT. 

Thus, D-CBT is designed to provide traditional fairness between 
flows of different characteristics by classifying and applying 
different enqueue policies to them, and restrict each UDP class to 
use the queue buffer space up to their share in average. We 
hypothesize that the advantages of D-CBT are the following: 
First, D-CBT avoids congestion as well as RED with the help of 
responsive traffic sources. Second, assuming that the flows in a 
class (especially the tagged UDP flows) use flow control 
mechanisms of which the congestion responsiveness characteristics 
are almost the same, D-CBT will fairly assign bandwidth to each 
flow with much less overhead than FRED, which requires per- 
flow state information. Even if the tagged flows do not use their 
fair share, D-CBT will still successfully assign bandwidth fairly to 
each class of flows, protecting TCP from the effect of 
misbehaving and unresponsive flows and also protecting the 
misbehaving (flow-controlled multimedia) flows from the effect 
of unresponsive flows. Lastly, D-CBT gives tagged (flow- 
controlled multimedia) flows a better chance to fairly consume the 
output bandwidth than under FRED by performing per-class 
punishments instead of the strict per-flow punishment. 

2.2 Cut-In Packet Scheduling (CHIPS) 
CHIPS is a light-weight multimedia favored packet scheduling 
mechanism that can replace the FCFS enqueue style packet 
scheduling of a RED-managed queue for CBT, D-CBT and 
possibly other RED-like mechanisms, which is specifically 
targeted to improve multimedia jitter. CHIPS monitors the average 
enqueue rates of tagged and the other flows, and is activated when 
the tagged flows are using a relatively smaller fraction of 
bandwidth than the TCP flows. On transient congestion in which 
the queue length is greater than the average queue length, CHIPS 
awards tagged (flow-controlled multimedia) flows by allowing 
their packets to "cut" in the line of queue to the average queue 
length. Figure 4 shows the design of ChIPS. 

By inserting tagged UDP packets at the average queue length on 
transient congestion, CHIPS improves flow-controlled multimedia 
jitter. However, this could harm the TCP flows and even make 
them time out by introducing a large extra delay when the 
multimedia traffic is taking a considerable portion of the output 
bandwidth. Under the normal RED queue mechanism that has no 
means to regulate the queue buffer usage among the classes of 
flows, it is essential for CHIPS to monitor the average enqueue 
ratio between the tagged and other flows and turn on its function 
only when the ratio is small. However, under CBT, in which the 
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tagged threshold can be explicitly set to use a small fraction of the 
available queue buffer, this automatic turn on/off function is not 
really necessary. When used with D-CBT, the ratio that turns off 
CHIPS could be set relatively large (tested for up to 50% in our 
simulations with a RED minimum threshold of 5 and the 
maximum of 15) without degrading the fairness because of the 
"self-adjusting" ability of D-CBT. When a relatively large 
number of tagged flows compete for bandwidth with TCP flows, 
CHIPS could instantly lower the throughput of the TCP flows. 
However, this will also lower the average queue length of the 
queue, and therefore the fair threshold for the tagged class will be 
reduced and the tagged class throughput will be reduced as well. 
Thus, CHIPS may cause the average queue length to fluctuate a bit 
more but should not reduce fairness significantly. Section 5 has 
detailed results. 
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Figure 4. Design of CHIPS (Tagged Packet 
Insertion on Transient Congestion) 

Another issue in implementing CHIPS is that the increment of the 
tagged packet dequeue rate caused by the insertion could degrade 
the fairness when the packet enqueue decision makes use of each 
class' buffer usage as in CBT and D-CBT. This faster tagged 
packet drain rate is not an issue for RED since its enqueue 
decision has nothing to do with the drain rate. However, in CBT 
and D-CBT, the faster drain rate lowers the average number of 
enqueued packets for the tagged class, which could result in the 
tagged class getting more bandwidth than its fair share. To 
prevent this effect, we used a virtual FIFO queue for counting the 
number of enqueued packets for the UDP classes, in which the 
class information of an enqueuing packet is always enqueued at 
the end, even though CHIPS cuts a tagged packet in the line of the 
real queue. In this way, the virtual queue can help more fairly 
count the class averages by telling if the tagged packets that have 
been transmitted already are still in the queue. Thus, the actual 
tagged packet drain rate does not affect the calculation of the 
average number of enqueued packets for the tagged class. 

Looking at the complexity of the design, Chips has 0(1) 
behavior, since the insertion complexity is 0(1) and the virtual 
queue maintenance complexity is also 0(1). We believe that 
ChipS, which noticeably improves tagged flow (flow-controlled 
multimedia) jitter, along with D-CBT would further encourage 
multimedia applications to use a flow control mechanism. An 
important issue that is not addressed in this paper is how to 
monitor and tag the flow-controlled multimedia flows. This issue 
of packet marking is beyond the scope of this paper, but can be 
extended from research into Diffserv scenarios [1]. We believe 
that this job should be done at the Internet Service Provider (ISP) 

or at the local network management level at the gateways to the 
public networks, and leave the routers free from this issue. The 
next section presents the methods we used to evaluate D-CBT and 
CHIPS. 

3. PERFORMANCE METRICS 
This section presents the fairness and jitter measurement metrics 
used to evaluate our proposed mechanism. To measure the 
fairness among the three different classes of flows and also to 
visualize the system's fairness on individual flows, we use the 
following two metrics. The first metric is an indicator of how 
fairly the output bandwidth is assigned to each class considering 
the number of flows in the class, called the direct comparison of 
the average per-flow throughput in each class. This is an average 
aggregated class throughput divided by the number of flows in the 
class. As the second fairness measurement metric, Jain's fairness 
index is used to visualize the fairness among individual flows [8]. 
Figure 5 shows the formula that calculates Jain's fairness, which 
gets the average throughputs of the flows (xi) of which the fairness 
is measured as an input, and produces a normalized number 
between 0 and 1, where 0 indicates the greatest unfairness and I 
indicates the greatest fairness. 

n 2 

f(xo,X,,x2,...,x,)= / 
nE 

J ~  

Figure 5. Jain's Fairness Index Equation 

Another network performance factor we measure is multimedia 
stream jitter (Figure 6). Jitter can is primarily measured in one of 
two ways: variance in inter-frame arrival time at the receiver, and 
variance in end-to-end delay. While the former is a receiver- 
oriented observation on the variance, the latter is a more network- 
oriented observation of the variance. Measuring jitter as variance 
in inter-frame arrival time (ex, r2 - r l)  is useful when a traffic 
source's frame transmission interval is fixed. However, it may not 
be a good measure of jitter when the transmission interval varies 
as in the case of flow-controlled multimedia applications which 
may not transmit a frame in response to congestion. Measuring 
jitter in terms of end-to-end delay (ex, r2 - s2) is more direct 
indicator of a system's performance on multimedia streams, since 
it eliminates the inter-frame transmission periods of the source. 

sender sO,, s l  s2 s3 s4 \ \ \ \ \  
receiver rO r l  r2 r3 r4 

A Jitter Free Stream 

sender ~,,~ s~ "~'~s2 s3 s ~  =,.. 

receiver rO rl r2 r3 r4 
A Stream with Jitter 

Figure 6. Multimedia Jitter - sd is the time at 
which the sender transmits frame i. r / i s  the 
time at which the receiver receives frame i. 
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In real environments, it is hard to measure jitter in terms of 
variance in end-to-end delay because of asynchronized docks at 
the source and destination. However, in our simulation 
environment where only one logical clock is used for the whole 
system, it is easy to measure the variance in the end-to-end delay. 
Moreover this method can even visualize the effect of queuing 
delays of a single router on jitter well. Therefore, we measured 
jitter in terms of variance in end-to-end delay. 

4. SIMULATION 
We ran a simulation for each of RED, CBT, D-CBT and D-CBT 
with CHIPS. Every simulation had exactly the same settings 
except for the network routers, each of which was set to use one 
of the above four outbound queue management mechanisms. The 
network topology and the traffic source schedules are shown in 
Figure 7. 
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Figure 7. Simulation Scenario and Network Setup 

In each simulation, we had 67 source nodes connected to one 
router and 67 destination nodes connected to the other router, 
which are interconnected by a link with 25Mbps bandwidth and 
20ms of delay. Each link that connects a source (or destination) 
node and a router was set to have 25Mbps of bandwidth and 5ms 
of delay. For traffic sources, 55 FTP, 10 flow-controlled 
multimedia traffic generators called MM_APP [2] (tagged) and 2 
CBR (untagged) traffic generators were used, where FI'P used 
TCP Reno and the others used UDP as the underlying transport 
agent. All the TCP agents were set to have a maximum 
congestion window size of 20 packets and maximum packet size 
of IKbyte. The UDP agents were also set to have maximum 
packet size of 1Kbyte, so that all the packets in the network were 
the same size. The MM_APP traffic generators, which react to 
congestion using 5 discrete media scales with a "cut scale by half 
at frame loss, up scale by one at R'I 'I" flow control mechanism, 
used 300, 500, 700, 900 and 1,100Kbps for scale 0 to 4 
transmission rates, with a fixed packet size of 1Kbyte. The CBR 
sources were set to generate 1Kbyte packets at a rate of 5Mbps. 

We scheduled the traffic sources such that 25 TCP flows and 10 
MM_APP flows were competing for the bandwidth during 0 to 10 
seconds. At this period the fair bandwidth share for each 
connection was about 714Kbps (25Mbps / 35 flows). In the next 
period (10 to 20 seconds), the two high bandwidth CBR blasts 
joined trying to aggressively use the output bandwidth of which 
the average fair share was about 675Kbps (25Mbps / 37 flows). 
Later at 20 seconds, 30 more TCP flows came into the network 

lowering the average fair share during the last 10 seconds to about 
373Kbps (25Mbps / 67 flows). 

Network routers were assigned a 60-packet long physical 
outbound queue. The RED parameters, which are shown in Figure 
7, were chosen from one of the sets that are recommended by 
Floyd and Jacobson [6]. For CBT, besides the RED parameters, 
the tagged and untagged class thresholds (denoted as mmuth and 
udp_th in the figure) were set to 2.9 packets and 0.6 packets 
respectively to force each UDP flows to get about their fair 
bandwidth shares during 0 to 20 seconds. Assuming the average 
queue size is 10 packets, by reserving an average of a 2.9-packet 
space, the tagged class could get an average bandwidth of 
7,250Kbps (25Mbps * 2.9 / 10) at congestion, which is about I0 
times (10 tagged flows) the fair flow share during 0 to 10 seconds. 
Likewise, by reserving 0.6-packet space in the queue, the 
untagged class could get an average of 1,500Kbps, that is little bit 
more than 2 times (2 untagged flows) the fair flow share during 10 
to 20 seconds. 

D-CBT also shares the RED settings, but since each threshold is 
assigned dynamically to the fair share of each class, no threshold 
setup was necessary. Finally, CHIPS was set to turn off its cut-in 
scheduling feature when the ratio between the number of tagged 
flows and the other flows are greater than 50%. However, under 
our simulation, CHIPS was always on since the ratio was always 
under 50%. 

Thus, the simulations were designed to give an environment under 
which all three queue management mechanism manage output 
bandwidth fairness during the first 10 seconds, RED fails during 
the second 10 seconds, and CBT fails during the last 10 seconds. 
Then, we examine if D-CBT dynamically offers fair bandwidth 
allocation in every situation. Also, by comparing the results 
(fairness and jitter) of D-CBT with CHIPS with basic D-CBT, we 
examine the effect of CHIPS on fairness and multimedia jitter. 

5. RESULTS AND ANALYSIS 
We measured the performance of RED, CBT, D-CBT, and D-CBT 
with CHIPS in terms of fairness and multimedia jitter. We also 
compared TCP throughput under CHIPS and basic D-CBT as well 
as packet drop percentages. 

5.1 Class' Average Per-Flow Throughput 
Figure 8 (a) through (d) compares the periodic (i.e., 0-10, 10-20 
and 20-30 seconds) average per-flow throughput for each class 
under the four queue mechanisms. 

As shown in Figure 8 (a), RED absolutely failed to assign 
bandwidth fairly to each class of flows from 10 seconds when the 
two high bandwidth untagged UDP flows (unresponsive CBR) 
join transmitting at a total of 10Mbps, about 40% of the link 
bandwidth. During 0-10 seconds, when 25 TCP and 10 tagged 
(flow-contxolled MM APP) flows were competing for the 
bandwidth, it was somewhat unfair as a tagged flow got an 
average of 37% more bandwidth than a TCP flow, but RED was 
able to manage the bandwidth. However, when the untagged 
UDP blast came into the system, RED was totally unable to 
manage bandwidth. The 2 untagged UDP flows got most of the 
bandwidth they needed (average of 4.68Mbps out of 5Mbps), and 
the remaining flows used the leftover bandwidth. Especially, the 
25 TCP flows got severely punished and transmitted at an average 

244 



of 293Kbps per flow as they often went back to slow start and 
even timed out. Fairness got worse as 30 more TCP flows joined 
at 20 seconds and experienced starvation. 
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Figure 8. Average Per-Flow Throughput for TCP, 
Tagged UDP and Untagged UDP Classes under RED, 
CBT, D-CBT and D-CBT with ChEPS 

Figure 8 (b) shows that CBT can avoid the great unfairness of 
RED using fixed thresholds for the UDP classes. However, CBT 
was not assigning the output bandwidth to each class as expected. 
When designing the simulation, we set the UDP thresholds such 
that during 0-10 seconds each tagged UDP flow should get about 
725Kbps on average. During 10-20 seconds, we expected that 
each tagged flow's average bandwidth would remain the same and 
each untagged UDP flow would get an average of 750Kbps. 
Also, we expected that during 20-30 seconds, the tagged and 
untagged flows would get a large portion of the bandwidth the 
same as during 10-20 seconds and the TCP flows would get much 
less than the fair share during this period. However, the 
simulation result shows that the tagged UDP class got more 
bandwidth than the expected values especially during the last 
period, while the untagged UDP class got much less bandwidth 
than expected. 

We found that this is mainly due to how and when CBT updates 
each UDP class threshold and RED queue average. CBT updates 
each UDP class average only for incoming packets that belong to 
the class, and the RED unit updates its queue average for all 
incoming TCP packets and for UDP packets that passed an 
appropriate threshold test. Therefore, the class averages and the 
RED queue average are almost independently updated at different 
speeds that are closely related the number of incoming packets 
that belong to the class. In addition, the RED average has a 
higher chance of being updated faster than the UDP class 
averages. In this situation, which we call unsynchronized 
weighted-average updates, whoever (i.e. a class) updates its 
weighted-average more often will get less bandwidth by having a 
larger weighted-average than the average of others for the same 

amount of class output bandwidth, and the output bandwidth is 
controlled using the averages at the UDP threshold test units. 

Figure 9 shows this effect by comparing two situations where a 
UDP class that has an initial class weighted-average of 1, a weight 
of 0.1 and a class threshold of 1.02, is experiencing two different 
incoming packet rates. Figure 9 (a) is the case when the incoming 
packet rate is 0.5 packets per packet transmission delay, and 
Figure 9 (b) is the ease when the class is receiving packets at the 
rate of 1.0 packets per packet transmission delay. In this example, 
it is assumed that the traffic sources are unresponsive CBR 
applications. One thing to note in the figure is that the class 
average shown at the left bottom of each queue in each state is its 
value before making the enqueue admission decision for an 
incoming packet at that state. As you can see in the figure, as the 
number of incoming packets for a class increases, packets are 
enqueued in a bursty manner, and more importantly, its class 
average gets larger. As the average is updated more frequently, 
not only is a newly enqueued packet added to the average (with 
the weight of 0.1), but also the existence of the other already 
enqueued packet are added to the average. For example, the 
existence of the first packet is added to the average 2 times more 
for the second situation than for the first situation. Note that 
Figure 9 (a) enqueues more packets but has a lower class average. 
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(b) Incoming Packet Rate = 1.0 pkts / pkt-Uansmtssion-delay 
(Dropped packets are not shown) 

Figure 9. A CBT Class's Weighted Average under 
Two Different Incoming Packet Rates 

The weighted-average calculation method works fine when the 
purpose of measuring an average queue size is to detect 
impending congestion as in RED. However, when the method is 
used to assign bandwidth to different classes of flows by 
comparing each class' weighted-average number of enqueued 
packets, we have determined that all the weighted-averages should 
be updated at the same time and at an equal frequency to give a 
correct output bandwidth utilization ratio among the classes. In 
the case of CBT, by measuring each UDP class average and the 
RED average independently, the classes' bandwidth utilization 
could not measured correctly by comparing the class averages. 
By comparing the fairness measurement in Figure 8 (b) and 
CBT's outbound queue averages in Figure 10, especially for 20- 
30 seconds, one can easily see that CBT's attempt of using 
unsynchronously updated weighted-averages to regulate class 
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bandwidth was misleading. Figure 10 indicates that during 20-30 
seconds, 10 tagged flows used an average of about 2.5 packet- 
spaces in the queue that is 0.25 packet-spaces per each flow, and 
the 2 untagged flow used an average of about 0.6 packet-spaces 
that is 0.3 packet-spaces per each flow. However, as shown in 
Figure 8 (b), each tagged flow used about 657 Kbps of bandwidth 
and each untagged flow used about 318 Kbps, about one half of 
the per-flow bandwidth of a tagged flow. 

CBT Queue Averages (RED_AVG, TAG AVG, UTAG_AVG) 

5.2 Jain's Fairness Measurement 
Figure 11 visualizes the simulated systems' fairness on individual 
flows using Jain's Fairness Index, where the periodic (0-10, 10-20 
and 20-30) average throughput of each individual flow was given 
as input to Jain's equation. Jain's fairness measurement shows 
that the simulated system that uses RED queue management fails 
to fairly assign bandwidth to each individual flow from 10 
seconds when the unresponsive flows join in the system. The low 
Jain's index value for the RED system indicates that some flows 
are experiencing severe starvation during 10-20 seconds and even 
more severe starvation during 20-30 seconds when 30 extra TCP 
flows join. 

$ecends 

Figure 10. CBT Queue Averages - The top line is 
the RED average, the middle is the tagged UDP 
average and the lower is the untagged average. 

From the above observation, we conclude that the current CBT 
design can only prevent a great unfairness caused by unresponsive 
or misbehaving flows, and it needs some adjustment on weighted- 
average calculation. Indeed, we tried the average calculation 
method that is used in D-CBT in CBT and got a much better 
result, that is the ratio between the three averages indicates the 
ratio between the actual classes' bandwidth utilization. However, 
we did not include the result in this paper, since the method is 
used in only D-CBT and we are presenting D-CBT in the next 
paragraph. 

Figure 8 (c) shows the D-CBT results, which indicates that D- 
CBT fairly managed bandwidth during all periods by dynamically 
allocating the right amount of output queue space to each flow 
class. It also shows that by updating each class and RED average 
at the same time in a synchronized manner, the ratio between the 
averages is a good indicator of the ratios between each class' 
bandwidth utilization. One thing to note in the figure is that 
although we strictly regulate the untagged class by assigning a fair 
threshold calculated from RED's minimum threshold, the 
untagged class did get most of its share. This is because the high 
bandwidth untagged (unresponsive) packets were allowed to enter 
the queue without a threshold test, when RED indicated no 
congestion. 

Figure 8 (d) shows the result of D-CBT with CHIPS. The result 
confirms that CHIPS, when used with D-CBT, does not affect 
fairness between each class of flows, due to the virtual queue and 
D-CBT's self adjusting capability described in Section 2.2. In the 
simulation, the ratio between tagged flows and all flows was about 
28% during 0-20 seconds, and was about 15% during the last 10 
seconds. 

Jain's Fairness 
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Figure 11. Ja in ' s  Fairness Comparison 

The system that uses the CBT queue management mechanism was 
fair overall in distributing bandwidth to each flow. However, 
during 20-30 seconds, the system's fairness was degraded because 
the 10 tagged (multimedia) flows got about twice as much 
bandwidth as the other flows. One thing to note is that CBT's 
fairness was pre-engineered. In a circumstance where traffic mixes 
change a lot, CBT might show more degraded fairness. 

On the other hand, the systems that use D-CBT or D-CBT with 
CHIPS were dynamically adjusting to changing flow mixes, and 
were very fair not only to the classes of flows but also to 
individual flows as Jain's index numbers indicate. Jain's fairness 
measurement results on D-CBT and D-CBT with CHIPS also 
reconfirmed that CHIPS did not degrade the system's fairness. 

5.3 Analysis of CHIPS 
Now that we have shown that D-CBT outperforms RED and CBT 
in managing bandwidth, and that the use of CHIPS does not 
degrade the performance of D-CBT, this section presents the 
performance of CHIPS on multimedia jitter and TCP throughput. 
Figure 12 shows tagged UDP (or multimedia) jitter by comparing 
a MM_APP application's end-to-end frame delay under D-CBT 
and D-CBT with CHIPS. 

The result indicates that CHIPS does improve tagged stream jitter 
by inserting tagged packets into the line of the queue to which the 
RED average points on transient congestion. Under CHIPS, the 
maximum tagged-UDP jitter was about 5ms (36ms - 31ms) while 
it was about 12ms (43ms - 31ms) under normal D-CBT. Noting 
that the maximum threshold of RED was set to 15 packets, which 
gives about 3ms (15pkts * 8Kbits / 25Mbps) of queuing delay, 
CHIPS was able to regulate the maximum tagged stream jitter 
around the queuing delay of the RED's maximum threshold. 
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Figure 12. CHIPS Effect on Multimedia Jitter 

We believe that CHIPS effect on improved multimedia jitter could 
be very significant because of the following two reasons. First, 
what we show in Figure 12 is the jitter gain due to a single router. 
When multiple routers are involved, the jitter gain due to CHIPS 
could be larger. Second, in the simulation, we used multimedia 
frames that are the same size as that of a network packet, meaning 
that no frame fragmentation occurs in the IP layer. Assuming that 
a multimedia application uses frames that are larger than a 
network packet and are chopped into multiple packets in the 
network, the jitter improvement due to ChIPs could be even more 
significant, since the multimedia packets have a better chance to 
be transmitted close to each other at rnuters. Thus, we believe 
that the potential for ChIPs to improve multimedia jitter is larger 
than shown in our experiments. 

Table 1. TCP Packet Accounting (0 ~ 30 Seconds) 

D-CBT 66,648 pkts [ 4.46 % 17,773 Kbps 
1 

I D-CBT w/ CHIPS 66,386 pkts 4.44 % 17.703 Kbps 

Table 2. Tagged (MM) Packet Accounting (0 ~ 30 Seconds 

D-CBT 21,126 pkts 11.85 % 

D-CBT w/ 
CHIPS 21,519 pkts 12.95 % 

lastly, we present TCP packet accounting and tagged packet 
accounting for the simulation in Table 1 and Table 2. Table 1 
shows the TCP packet drop rate and throughput under CHIPS is 
very compatible with those of basic D-CBT. The TCP throughput 
under ChIPs was about 99.6% of the throughput under basic D- 
CBT. This indicates that CHIPS, when used along with D-CBT, 
may not significantly affect the TCP throughput. Comparing the 
TCP throughput loss with the multimedia jitter gain, CHIPS 
compensates 14.3% ((42ms - 36ms) / 42ms * 100) of multimedia 
jitter gain for 0.4% of TCP throughput loss for the simulation. 

Table 2 shows the multimedia packet drop rate of the system that 
used ChIPs is very compatible with that of the system that used 
basic D-CBT. This result shows that ChIPs has a high potential 
to improve end-user multimedia performance (perceptual quality) 
on the Internet by improving jitter without increasing the 

multimedia packet drop rate, which is another important factor in 
multimedia perceptual quality and for congestion control and 
system utilization. 

6 .  C O N C L U S I O N  
In this paper, we have presented the design and evaluation of our 
proposed router queue mechanisms, Dynamic Class-Based 
Threshold (D-CBT) and Cut-In Packet Scheduling (CHIPS), by 
comparing their performance with that of RED and CBT. D-CBT 
is a new active queue management mechanism that addresses the 
problem of fairness by grouping flows into TCP, tagged (flow- 
controlled multimedia) LTDP and untagged (other) UDP classes 
and regulating the average queue usage of the UDP classes to 
their fair shares. CHIPS is a multimedia-favored lightweight 
packet scheduling mechanism that can substitute the FCFS 
enqueue style packet scheduling part of a RED-managed queue 
for D-CBT and possibly for other RED-like queue mechanisms. 

As expected, RED, previously shown to be fair among TCP flows, 
showed an extreme unfairness with mixed traffic. CBT that uses a 
fixed threshold on UDP classes was able to avoid extreme 
unfairness. However, during the analysis, we found that CBT 
suffers from "unsynchronized weighted-average updates". That is, 
the ratio between independently updated UDP class averages and 
RED average does not correctly indicate the actual class 
bandwidth utilization ratio, since whichever class updates the 
average more frequently will have higher weighted-average than 
the others will, although they all use the same amount of 
bandwidth. 

D-CBT fixes CBT's problem by synchronizing all the average 
updates, and better manages bandwidth by dynamically 
determining the UDP thresholds to cooperate with RED by fairly 
assigning the output bandwidth to each class for all traffic mixes. 
That is, through class-based accounting, D-CBT fairly protects 
TCP from the effect of UDP flows and also fairly protects tagged 
UDP flows from untagged flows. We have also shown that 
CHIPS, when used with D-CBT, can improve multimedia jitter 
without degrading fairness. 

There exist many possible areas for future work and still remain 
many performance aspects to be evaluated. Recently, we 
implemented CBT and D-CBT into the Linux kernel [9], which 
currently works both for IPv4 and IPv6. Our current ongoing 
work is in measuring and analyzing the overheads of D-CBT 
using the Linux implementation and in optimizing it. Another 
area for future work is to measure the effect of the threshold test 
of D-CBT on multimedia QoS with currently available responsive 
multimedia applications, since bursty multimedia packet drops 
when the class average reaches the class threshold may degrade 
the multimedia quality noticeably. 

Another possible future project would be to extend this study to 
evaluate the limitation of CHIPS on the fairness and the link 
utilization offered by D-CBT. As noted in Section 2.2, CHIPS 
introduces an additional delay to other traffic which may affect 
TCP throughput. Therefore, in order for the use of CHIPS to be 
more practical, future work suggests an extended study to 
determine the maximum average ChIPs enqueue ratio between 
tagged and the other classes of flows without degrading fairness 
or link utilization. An additional project would be to evaluate D- 
CBT and CHIPS under the environment where fragile and robust 
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TCP connections as well as multimedia connections with different 
end-to-end delays coexist in the system. Another study that we 
could not do due to the lack of time but suggest as a future work 
is to compare the performance of the D-CBT with that of FRED. 
We expect that D-CBT could give better throughput performance 
for tagged UDP flows than FRED, since it frees flow-controlled 
multimedia flows from the strict per-flow punishment. 
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