
Dynamic-CBT and CHIPS - Router Support for
Improved Multimedia Performance on the Internet

ABSTRACT
The explosive increase in the volume and variety of Internet
traffic has placed a growing emphasis on congestion control and
fairness in Interact routers. Approaches to the problem of
congestion, such as active queue management schemes like
Random Early Detection (RED) use congestion avoidance
techniques and are successful with TCP flows. Approaches to the
problem of fairness, such as Fair Random Early Drop (FRED),
keep per-flow state and punish misbehaved, non-TCP flows.
Unfortunately, these punishment mechanisms also result in a
significant performance drop for multimedia flows that use flow
control. We extend Class-Based Threshold (CBT) [12], and
propose a new active queue management mechanism as an
extension to RED called Dynamic Class-Based Threshold (13-
CBT) to improve multimedia performance on the Internet. Also,
as an effort to reduce multimedia jitter, we propose a lightweight
packet scheduling called Cut-In Packet Scheduling (CHIPS) as an
alternative to FIFO packet scheduling. The performance of our
proposed mechanisms is measured, analyzed and compared with
other mechanisms (RED and CBT) in terms of throughput,
fairness and multimedia jitter through simulation using NS. The
study shows that D-CBT improves fairness among different
classes of flows and CHIPS improves multimedia jitter without
degrading fairness.

Keywords
Multimedia, Router, Queue management, Congestion, Fairness,
Jitter

1. INTRODUCTION
The Internet has moved from a data communication network for a
few privileged professions to an essential part of public life
similar to the public telephone networks, while assuming the role
of the underlying communication network for multimedia
applications such as lnternet phone, video conferencing and video
on demand (VOD). As a consequence, the volume of traffic and
the number of simultaneous active flows that an lntemet router

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commeJvial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
ACM Multimedia 2000 Los Angeles CA USA
Copyright ACM 2000 1-58113-198-4/00/10...$5.00

Jae Chung and Mark Claypool
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609
1-508-831-5357

{goos] claypool } @cs. wpi. edu

handles has increased dramatically, placing new emphasis on
congestion control and traffic fairness. Complicating traditional
congestion control is the presence of multimedia traffic that has
strict timing constraints, specifically delay constraints and
variance in delay, or jitter constraints [3,11]. This paper presents
a router queue management mechanism that addresses the
problem of congestion and fairness, and improves multimedia
performance on the Internet. Figure I shows some of the current
and the proposed router queue mechanisms.

Figure 1. Router Queue Mechanisms (shaded are proposed)

There have been two major approaches suggested to handle
congestion by means other than traditional drop-tail FIFO
queuing. The first approach uses packet or link scheduling on
multiple logical or physical queues to explicitly reserve and
allocate output bandwidth to each class of traffic, where a class
can be a single flow or a group of similar flows. This is the basic
idea of various Fair Queuing (FQ) disciplines such as DRR [13]
and the Class-Based Queuing (CBQ) algorithm [7]. When
coupled with admission control, the mechanism not only suggests
a solution to the problem of congestion but also offers potential
performance guarantees for the multimedia traffic class.
However, this explicit resource reservation approach would
change the "best effort" nature of the current Internet, and the
fairness definition of the traditional Internet may no longer be
preserved. Adopting this mechanism would require a change in
the network management and billing practices. Also, the
algorithmic complexity and state requirements of scheduling make
its deployment difficult [12].

The second approach, called Active Queue Management, uses
advanced packet queuing disciplines other than traditional FIFO
drop-tail queuing on an outbound queue of a router to actively
handle (or avoid) congestion with the help of cooperative traffic
sources. In the Internet, TCP recognizes packet loss as an
indicator of network congestion, and its back-off algorithm

239

reduces transmission load when network congestion is detected
[4]. One of the earliest and well-known active queue management
mechanism is Random Early Detection (RED), which prevents
congestion through monitoring outbound buffers to detect
impending congestion, and randomly chooses and notifies senders
of network congestion so that they can reduce their transmission
rate [6]. While fairly handling congestion for TCP flows, RED
reveals the critical problem that non-TCP flows that are
unresponsive or have greedier flow-control mechanisms than TCP
can take more share of the output bandwidth than TCP flows
[10,12]. In the worst case, it is possible for non-TCP flows,
especially for unresponsive ones, to monopolize the output
bandwidth while TCP connections are forced to transmit at their
minimum rates. This unfairness occurs because non-TCP flows
reduce transmission load relatively less than TCP flows or do not
reduce at all, and the same drop rate is applied to every flow.

This unfairness could be a serious problem in a near future as the
number of Internet multimedia flows increases. Delay sensitive
multimedia applications typically use UDP rather than TCP
because they require in-time packet delivery and can tolerate some
loss, rather than the guaranteed packet delivery with potentially
large end-to-end delay that TCP produces. Also, they prefer the
periodic packet transmission characteristics of UDP rather than
the bursty packet transmission characteristics of TCP that can
introduce higher receiver side jitter. Multimedia UDP applications
either do not use any flow-control mechanism or use their own
application-level flow control mechanisms that are rate-based
rather than window based and hence tend to be greedier than that
of TCP taking the multimedia Quality of Service (QoS)
requirements into account.

In addressing the problem of fairness, there have been strong
arguments that unresponsive or misbehaving flows should be
penalized to protect well-behaved TCP flows I [5]. Fair Random
Early Drop (FRED) is an active queue management approach that
incorporates this argument [10]. FRED adds per-active-flow
accounting to RED, isolating each flow from the effects of others.
It enforces fairness in terms of output buffer space by strictly
penalizing unresponsive or misbehaving flows to have an equal
fair share while assuring packets from flows that do not consume
their fair share are transmitted without loss. FRED achieves its
purpose not only in protecting TCP flows from unresponsive and
misbehaving flows but also in protecting fragile TCP connections
from robust TCP connections. However, FRED has a potential
problem that its TCP favored per-flow punishment could
unnecessarily discourage flow-controlled interactive multimedia
flows. Under FRED, incoming packets for a well-behaved TCP
flow consuming more than their fair share are randomly dropped
applying RED's drop rate. However, once a flow, although flow-
controlled, is marked as a non-TCP friendly flow, it is regarded as
an unresponsive flow and all incoming packets of the flow are
dropped when it is using more than its fair share. As a result, a
flow-controlled multimedia UDP flow, which may have a higher
chance to be marked, will experience more packet loss than a TCP
flow and be forced to have less than its fair share of bandwidth.

i A well-behaved flow (or TCP friendly) is defined as a flow that
behaves like a TCP flow with a correct congestion avoidance
implementation. A flow-controlled flow that acts different (or
greedier) than weU-behaved flow is a misbehaving flow.

Another major concern with FRED is that the per-active-flow
accounting is expensive and might not scale well.

Core-Stateless Fair Queueing (CSFQ) [14] addresses the
scalability problem by deploying hierarchical distribution of the
per-flow accounting workload. In CSFQ, edge routers are
distinguished from core routers, where edge routers calculate per-
flow state information in terms of rate estimates and label
outgoing packets, and core routers use the rate estimates to
achieve fair allocation of the output bandwidth without
maintaining per-flow states. The accuracy of CSFQ relies heavily
on the assumption that all packets from a flow travel along the
same path.

Jeffay et aL, [12] propose a new active queue management
scheme called Class-Based Threshold (CBT), which releases UDP
flows from strict per-flow punishment while protecting TCP flows
by adding a simple class-based static bandwidth reservation
mechanism to RED. In fact, CBT implements an explicit resource
reservation feature of CBQ on a single queue that is fully or
partially managed by RED without using packet scheduling.
Instead, it uses class thresholds that determine ratios between the
number of queue elements that each class may use during
congestion. CBT defines three classes: tagged (multimedia) UDP 2,
untagged (other) UDP and TCP. For each of the two UDP classes,
CBT assigns a pre-determined static threshold and maintains a
weighted-average number of enqueued packets that belong to the
class, and drops the incoming class' packets when the class
average exceeds the class threshold. By applying a threshold test
to each UDP class, CBT protects TCP flows from unresponsive or
misbehaving UDP flows, and also protects multimedia UDP flows
from the effect of other UDP flows. CBT avoids congestion as
well as RED, has less overhead and improves multimedia
throughput and packet drop rates compared to FRED. However,
as in the case of CBQ, the static resource reservation mechanism
of CBT could result in poor performance for rapidly changing
traffic mixes and is arguably unfair since it changes the best effort
nature of the Internet.

To eliminate the limitations due to the explicit resource
reservation of CBT while preserving its good features from class-
based isolation, we propose Dynamic-CBT (D-CBT). D-CBT
fairly allocates the bandwidth of a congested link to the traffic
classes by dynamically assigning the UDP thresholds such that the
sum of the fair share of flows in each class is assigned to the class
at any given time. In addition, as a means to improve multimedia
jitter, we propose a lightweight multimedia-favored packet
scheduling mechanism, Cut-In Packet Scheduling (CHIPS), as an
alternative to FIFO packet scheduling under D-CBT and possibly
under other RED like active queue management mechanisms.
CHIPS monitors average enqueue rates of tagged and the other
flows, and is invoked when the tagged flows are using a relatively
smaller fraction of bandwidth than the TCP flows. On transient
congestion in which the queue length is greater than the average
queue length, CHIPS awards weU-behaved (flow-controlled)
multimedia flows by allowing their packets to "cut" in the queue
to the average queue length.

2 Tagged (multimedia) UDP flows can be distinguished from other
(untagged) UDP flows by setting an unused bit of the Type of
Service field in the IP header (Version 4).

240

To evaluate the proposed mechanisms, we use an event driven
network simulator called NS (version 2) that simulates a variety of
IP networks [15]. NS implements most of the common IP
network components including RED. We implement CBT in NS,
extend it to D-CBT, add CHIPS into D-CBT, and compare the
performance of D-CBT and D-CBT with CHIPS with that of RED
and CBT. In the evaluation, our primary focus is on the effect of
heterogeneously flow-controlled traffic on the behavior of the
queue management mechanisms especially on fairness, and the
effect of queue management on the performance of well-behaved
(flow-controUed) multimedia flows.

2. P R O P O S E D M E C H A N I S M S
This section presents the design and implementation of Dynamic-
CBT (D-CBT) and Cut-In Packet Scheduling (CHIPS) in detail.
Before describing D-CBT and ChiPS, we present the design of
Class-Based Threshold (CBT) [12] which D-CBT extends. As
discussed briefly in Section 1, the main idea behind the design of
CBT is to apply class-based isolation on a single queue that is
fully or partially managed by RED without using packet
scheduling. Instead of using packet scheduling on multiple
logical queues, CBT regulates congestion-time output bandwidth
for n classes of flows using a RED queue management mechanism
and a threshold for each of the n-1 classes of flows, which is the
average number of queue units that a class may use. The
conceptual view of the first CBT design is shown in Figure 2.

Ch~s 1" l~dml~ ffi I~umd (A u i g u d Iaitldly)

~ mmmm ~ . ~ . ~ . ~ O O o ~ r , - - RED]

~ : ~ , ~ ',
--~ ~ , ._ , . ~ -~ '0o I ~ ' " - ~ '-'-~

o r - - - - - - - - 1 ~ l'est
Uatqged UDI ~ i i i

~',
k 'I

Figure 2. CBT (with RED for all) Conceptual View

CBT categorizes flows into three classes, which are TCP, tagged
(multimedia) UDP and untagged (other) UDP, and assigns a pre-
determined static threshold for each of the two UDP classes,
assuming that UDP flows are mostly unresponsive or misbehaving
and need to be regulated. When a UDP packet arrives, the
weighted-average for the appropriate class is updated and
compared against the threshold for the class to decide whether to
drop the packet before passing it to the RED algorithm~ For the
TCP class, CBT does not apply a threshold test but directly passes
incoming packets to the RED test unit. This is the first design of
CBT, called "CBT with RED for all". In the second design,
called "CBT with RED for TCP", only TCP packets are subjected
to RED's early drop test, and UDP packets that survive a
threshold test are directly enqueued to the outbound queue that is
managed by RED. Another difference from the first design is that
RED's average queue size is calculated only using the number of
enqueued TCP packets. CBT with RED for TCP is based on the
assumption that tagged (multimedia) UDP flows as well as
untagged (other) UDP flows are mostly unresponsive, and it is of

no use to notify these traffic sources of congestion earlier. D-CBT
is extended from CBT with RED for all. In the rest of this paper,
CBT refers to CBT with RED for all.

2 . 1 D y n a m i c - C B T (D-CBT)
D-CBT enforces fairness among classes of flows, and gives UDP
classes better queuing resource utilization. Figure 3 shows the
design of D-CBT. The key difference fi'om CBT is (1) the
dynamically moving fair thresholds and (2) the UDP class
threshold test that actively monitors and responds to RED
indicated congestion. To be more specific, by dynamically
assigning the UDP thresholds such that the sum of the fair average
queue resource share of flows in each class 3 is assigned to the
class at any given time, D-CBT fairly allocates the bandwidth of a
congested link to the traffic classes. Also, the threshold test units,
which are activated when RED declares impending congestion
O.e. red_avg > red_rain), coupled with the fair class thresholds,
allow the UDP classes to use the available queue resources more
effectively than in CBT, in which each UDP class uses the queue
elements an average of no more than its fixed threshold at any
time. Looking at it from a different view, D-CBT can be thought
of a Class-Based FRED-like mechanism that does per-class-
accounting on the three classes of flows.

As in CBT, D-CBT categorizes flows into TCP, tagged UDP and
untagged UDP classes. However, unlike the class categorization
of CBT in which flow-controlled multimedia flows are not
distinguished from unresponsive multimedia flows (all tagged),
D-CBT classifies UDP flows into flow-controlled multimedia
(tagged) UDP and other (untagged) UDP. The objective behind
this classification is to protect flow-controlled multimedia flows
from unresponsive multimedia flows, and encourage multimedia
applications to use congestion avoidance mechanisms, which may
be different than those of TCP. We believe that there are
advantages in categorizing UDP traffic in this way for the
following reasons: first, multimedia applications are the primary
flows that use high bandwidth UDP; second, by categorizing
flows by their congestion responsiveness characteristic (i.e. TCP
friendly, flow-controlled but misbehaving multimedia and
unresponsive flows), different management can be applied to the
classes of differently flow-controlled flows.

UDP I
l l"° i - I

Count Update

Umagsc d Flows Avgs
. i Drop | UP% in ~ --~ C~ T~h~-~i Test -~ - - -~

T~h To,, h l I

[. J

* T h r e s h o l d T e s t is ac t iva ted w h e n red_avg > red.2min

Figure 3. Design of Dy.amle-CBT (D-CBT)

3 Fair class shares are calculated based on the ratio between the
number of active flows in each class.

241

In fact, in determining the fair UDP thresholds, D-CBT calculates
the fair average output buffer share of the tagged UDP class from
the average queue length that is maintained by RED, and that of
untagged UDP class from the RED's minimum threshold (plus a
small allowance). This is based on the assumption that tagged
flows (or flow-controlled multimedia) can respond to network
congestion and will actively try to lower the average length of a
congested queue on notification of congestion. Therefore, they
are allowed to use the impending congestion state queue buffers
(i.e. red_avg - red..min when red_avg > red min) up to their fair
share of the average. However, unresponsive (untagged) flows,
which have no ability to respond to network congestion, are not
allowed to use the impending state queue buffers at impending
congestion. Actually, we allow the unresponsive UDP class to
use a small fraction of the impending state queue buffers, which is
10% of (red_max - red_rain) * untagged_UDP._share when the
maximum early drop rate is 0.1, to compensate for the effect of
needless additional early drops for the class.

In the design of D-CBT, the existence of the active flow counting
unit is a big structural difference from CBT. In order to calculate
a fair threshold (or average queue resource share) for each class,
D-CBT needs class state information, and therefore keeps track of
the number of active flows in each class. Generally, as in FRED,
active flows are defined as ones whose packets are in the
outbound queue [10]. However, we took slightly different
approach in detecting active flows, in that an active flow is one
whose packet has entered the outbound queue unit during a
certain predefined interval since the last time checked. In D-CBT,
an active flow counting unit that comes right after the classifier
maintains a sorted linked list, which contains a flow descriptor
and its last packet reception time, and a flow counter for each
class. Currently, the flow descriptor consists of a destination IP
address and the flow ID (IPv6). However, assuming Ipv4, this
could be replaced by source and destination address, although this
would redefine a flow as per source-destination pair.

For an incoming packet after the classification, the counting unit
updates an appropriate data structure by inserting or updating the
flow information and the current local time. When inserting new
flow information, the flow counter of the class is also increased by
one. The counting unit, at a given interval (set to 300ms in our
implementation), traverses each class' linked list, deletes the old
flow information and decreases the flow counter. The objective
behind this probabilistic active flow counting approach is
twofold: First, D-CBT does not necessarily require an exact count
of active flows as do other queue mechanisms that are based on
flow-based-accounting, although a more exact count is better for
exercising fairness among flow classes. Second, it might be
possible to improve the mechanism's packet processing delay by
localizing the counting unit with the help of router's operating
system and/or device. For example, the traversing delete is a
garbage collection-like operation that could be performed during
the router's idle time or possibly processed by a dedicated
processor in a multiprocessor environment. In our simulator
implementation, we used a sorted linked list data structure that has
inserting and updating complexity of O(n), and traversing
complexity of O(n), where n is the number of flows of a class.
Assuming that a simple hash table is used instead, the complexity
of inserting and updating operation drops to 0(1), while the
complexity of the traverse delete will remain O(n). Future work
suggests more thorough measurement of added overhead.

When an incoming packet is updated or inserted according to its
flow identification to its class data structure at the counting unit,
D-CBT updates the RED queue average, the tagged UDP average
and the untagged UDP average, and passes the packet to an
appropriate test unit as shown in Figure 3. Note that for every
incoming packet all of the averages are updated using the same
weight. This is to apply the same updating ratio to the weighted-
averages, so that a snapshot in time at any state gives the correct
average usage ratio among the classes. Using the three averages
and the active flow count for each class, the UDP threshold test
units calculate the fair thresholds for the tagged and untagged
UDP classes, and apply the threshold test to incoming packets of
the class when the RED queue indicates impending congestion.
UDP packets that survive an appropriate threshold test are passed
to the RED unit along with the TCP flows as in CBT.

Thus, D-CBT is designed to provide traditional fairness between
flows of different characteristics by classifying and applying
different enqueue policies to them, and restrict each UDP class to
use the queue buffer space up to their share in average. We
hypothesize that the advantages of D-CBT are the following:
First, D-CBT avoids congestion as well as RED with the help of
responsive traffic sources. Second, assuming that the flows in a
class (especially the tagged UDP flows) use flow control
mechanisms of which the congestion responsiveness characteristics
are almost the same, D-CBT will fairly assign bandwidth to each
flow with much less overhead than FRED, which requires per-
flow state information. Even if the tagged flows do not use their
fair share, D-CBT will still successfully assign bandwidth fairly to
each class of flows, protecting TCP from the effect of
misbehaving and unresponsive flows and also protecting the
misbehaving (flow-controlled multimedia) flows from the effect
of unresponsive flows. Lastly, D-CBT gives tagged (flow-
controlled multimedia) flows a better chance to fairly consume the
output bandwidth than under FRED by performing per-class
punishments instead of the strict per-flow punishment.

2.2 Cut-In Packet Scheduling (CHIPS)
CHIPS is a light-weight multimedia favored packet scheduling
mechanism that can replace the FCFS enqueue style packet
scheduling of a RED-managed queue for CBT, D-CBT and
possibly other RED-like mechanisms, which is specifically
targeted to improve multimedia jitter. CHIPS monitors the average
enqueue rates of tagged and the other flows, and is activated when
the tagged flows are using a relatively smaller fraction of
bandwidth than the TCP flows. On transient congestion in which
the queue length is greater than the average queue length, CHIPS
awards tagged (flow-controlled multimedia) flows by allowing
their packets to "cut" in the line of queue to the average queue
length. Figure 4 shows the design of ChIPS.

By inserting tagged UDP packets at the average queue length on
transient congestion, CHIPS improves flow-controlled multimedia
jitter. However, this could harm the TCP flows and even make
them time out by introducing a large extra delay when the
multimedia traffic is taking a considerable portion of the output
bandwidth. Under the normal RED queue mechanism that has no
means to regulate the queue buffer usage among the classes of
flows, it is essential for CHIPS to monitor the average enqueue
ratio between the tagged and other flows and turn on its function
only when the ratio is small. However, under CBT, in which the

242

tagged threshold can be explicitly set to use a small fraction of the
available queue buffer, this automatic turn on/off function is not
really necessary. When used with D-CBT, the ratio that turns off
CHIPS could be set relatively large (tested for up to 50% in our
simulations with a RED minimum threshold of 5 and the
maximum of 15) without degrading the fairness because of the
"self-adjusting" ability of D-CBT. When a relatively large
number of tagged flows compete for bandwidth with TCP flows,
CHIPS could instantly lower the throughput of the TCP flows.
However, this will also lower the average queue length of the
queue, and therefore the fair threshold for the tagged class will be
reduced and the tagged class throughput will be reduced as well.
Thus, CHIPS may cause the average queue length to fluctuate a bit
more but should not reduce fairness significantly. Section 5 has
detailed results.

Qu~us
M~=spr 0

al

Early ~ - - T)
Drop

- - - - ~ t Tsst

. J

Figure 4. Design of CHIPS (Tagged Packet
Insertion on Transient Congestion)

Another issue in implementing CHIPS is that the increment of the
tagged packet dequeue rate caused by the insertion could degrade
the fairness when the packet enqueue decision makes use of each
class' buffer usage as in CBT and D-CBT. This faster tagged
packet drain rate is not an issue for RED since its enqueue
decision has nothing to do with the drain rate. However, in CBT
and D-CBT, the faster drain rate lowers the average number of
enqueued packets for the tagged class, which could result in the
tagged class getting more bandwidth than its fair share. To
prevent this effect, we used a virtual FIFO queue for counting the
number of enqueued packets for the UDP classes, in which the
class information of an enqueuing packet is always enqueued at
the end, even though CHIPS cuts a tagged packet in the line of the
real queue. In this way, the virtual queue can help more fairly
count the class averages by telling if the tagged packets that have
been transmitted already are still in the queue. Thus, the actual
tagged packet drain rate does not affect the calculation of the
average number of enqueued packets for the tagged class.

Looking at the complexity of the design, Chips has 0(1)
behavior, since the insertion complexity is 0(1) and the virtual
queue maintenance complexity is also 0(1). We believe that
ChipS, which noticeably improves tagged flow (flow-controlled
multimedia) jitter, along with D-CBT would further encourage
multimedia applications to use a flow control mechanism. An
important issue that is not addressed in this paper is how to
monitor and tag the flow-controlled multimedia flows. This issue
of packet marking is beyond the scope of this paper, but can be
extended from research into Diffserv scenarios [1]. We believe
that this job should be done at the Internet Service Provider (ISP)

or at the local network management level at the gateways to the
public networks, and leave the routers free from this issue. The
next section presents the methods we used to evaluate D-CBT and
CHIPS.

3. PERFORMANCE METRICS
This section presents the fairness and jitter measurement metrics
used to evaluate our proposed mechanism. To measure the
fairness among the three different classes of flows and also to
visualize the system's fairness on individual flows, we use the
following two metrics. The first metric is an indicator of how
fairly the output bandwidth is assigned to each class considering
the number of flows in the class, called the direct comparison of
the average per-flow throughput in each class. This is an average
aggregated class throughput divided by the number of flows in the
class. As the second fairness measurement metric, Jain's fairness
index is used to visualize the fairness among individual flows [8].
Figure 5 shows the formula that calculates Jain's fairness, which
gets the average throughputs of the flows (xi) of which the fairness
is measured as an input, and produces a normalized number
between 0 and 1, where 0 indicates the greatest unfairness and I
indicates the greatest fairness.

n 2

f(xo,X,,x2,...,x,)= /
nE

J ~

Figure 5. Jain's Fairness Index Equation

Another network performance factor we measure is multimedia
stream jitter (Figure 6). Jitter can is primarily measured in one of
two ways: variance in inter-frame arrival time at the receiver, and
variance in end-to-end delay. While the former is a receiver-
oriented observation on the variance, the latter is a more network-
oriented observation of the variance. Measuring jitter as variance
in inter-frame arrival time (ex, r2 - r l) is useful when a traffic
source's frame transmission interval is fixed. However, it may not
be a good measure of jitter when the transmission interval varies
as in the case of flow-controlled multimedia applications which
may not transmit a frame in response to congestion. Measuring
jitter in terms of end-to-end delay (ex, r2 - s2) is more direct
indicator of a system's performance on multimedia streams, since
it eliminates the inter-frame transmission periods of the source.

sender sO,, s l s2 s3 s4 \ \ \ \ \
receiver rO r l r2 r3 r4

A Jitter Free Stream

sender ~,,~ s~ "~'~s2 s3 s ~ =,..

receiver rO rl r2 r3 r4
A Stream with Jitter

Figure 6. Multimedia Jitter - sd is the time at
which the sender transmits frame i. r / i s the
time at which the receiver receives frame i.

243

In real environments, it is hard to measure jitter in terms of
variance in end-to-end delay because of asynchronized docks at
the source and destination. However, in our simulation
environment where only one logical clock is used for the whole
system, it is easy to measure the variance in the end-to-end delay.
Moreover this method can even visualize the effect of queuing
delays of a single router on jitter well. Therefore, we measured
jitter in terms of variance in end-to-end delay.

4. SIMULATION
We ran a simulation for each of RED, CBT, D-CBT and D-CBT
with CHIPS. Every simulation had exactly the same settings
except for the network routers, each of which was set to use one
of the above four outbound queue management mechanisms. The
network topology and the traffic source schedules are shown in
Figure 7.

i

10 MM-UDP

2 CBR-UDP
(5 ~ each)

30 FIpo'I'CP

i

(S ~ d) 0 lO 20

J
_!
"i
311

25Mb~, 5ras 251v~, 5ms

z~l -z~s q_sJ.st - 60

~gD, amx. tch - 1 5

] qw~t ulat: - 0 . o 0 a

Figure 7. Simulation Scenario and Network Setup

In each simulation, we had 67 source nodes connected to one
router and 67 destination nodes connected to the other router,
which are interconnected by a link with 25Mbps bandwidth and
20ms of delay. Each link that connects a source (or destination)
node and a router was set to have 25Mbps of bandwidth and 5ms
of delay. For traffic sources, 55 FTP, 10 flow-controlled
multimedia traffic generators called MM_APP [2] (tagged) and 2
CBR (untagged) traffic generators were used, where FI'P used
TCP Reno and the others used UDP as the underlying transport
agent. All the TCP agents were set to have a maximum
congestion window size of 20 packets and maximum packet size
of IKbyte. The UDP agents were also set to have maximum
packet size of 1Kbyte, so that all the packets in the network were
the same size. The MM_APP traffic generators, which react to
congestion using 5 discrete media scales with a "cut scale by half
at frame loss, up scale by one at R'I 'I" flow control mechanism,
used 300, 500, 700, 900 and 1,100Kbps for scale 0 to 4
transmission rates, with a fixed packet size of 1Kbyte. The CBR
sources were set to generate 1Kbyte packets at a rate of 5Mbps.

We scheduled the traffic sources such that 25 TCP flows and 10
MM_APP flows were competing for the bandwidth during 0 to 10
seconds. At this period the fair bandwidth share for each
connection was about 714Kbps (25Mbps / 35 flows). In the next
period (10 to 20 seconds), the two high bandwidth CBR blasts
joined trying to aggressively use the output bandwidth of which
the average fair share was about 675Kbps (25Mbps / 37 flows).
Later at 20 seconds, 30 more TCP flows came into the network

lowering the average fair share during the last 10 seconds to about
373Kbps (25Mbps / 67 flows).

Network routers were assigned a 60-packet long physical
outbound queue. The RED parameters, which are shown in Figure
7, were chosen from one of the sets that are recommended by
Floyd and Jacobson [6]. For CBT, besides the RED parameters,
the tagged and untagged class thresholds (denoted as mmuth and
udp_th in the figure) were set to 2.9 packets and 0.6 packets
respectively to force each UDP flows to get about their fair
bandwidth shares during 0 to 20 seconds. Assuming the average
queue size is 10 packets, by reserving an average of a 2.9-packet
space, the tagged class could get an average bandwidth of
7,250Kbps (25Mbps * 2.9 / 10) at congestion, which is about I0
times (10 tagged flows) the fair flow share during 0 to 10 seconds.
Likewise, by reserving 0.6-packet space in the queue, the
untagged class could get an average of 1,500Kbps, that is little bit
more than 2 times (2 untagged flows) the fair flow share during 10
to 20 seconds.

D-CBT also shares the RED settings, but since each threshold is
assigned dynamically to the fair share of each class, no threshold
setup was necessary. Finally, CHIPS was set to turn off its cut-in
scheduling feature when the ratio between the number of tagged
flows and the other flows are greater than 50%. However, under
our simulation, CHIPS was always on since the ratio was always
under 50%.

Thus, the simulations were designed to give an environment under
which all three queue management mechanism manage output
bandwidth fairness during the first 10 seconds, RED fails during
the second 10 seconds, and CBT fails during the last 10 seconds.
Then, we examine if D-CBT dynamically offers fair bandwidth
allocation in every situation. Also, by comparing the results
(fairness and jitter) of D-CBT with CHIPS with basic D-CBT, we
examine the effect of CHIPS on fairness and multimedia jitter.

5. RESULTS AND ANALYSIS
We measured the performance of RED, CBT, D-CBT, and D-CBT
with CHIPS in terms of fairness and multimedia jitter. We also
compared TCP throughput under CHIPS and basic D-CBT as well
as packet drop percentages.

5.1 Class' Average Per-Flow Throughput
Figure 8 (a) through (d) compares the periodic (i.e., 0-10, 10-20
and 20-30 seconds) average per-flow throughput for each class
under the four queue mechanisms.

As shown in Figure 8 (a), RED absolutely failed to assign
bandwidth fairly to each class of flows from 10 seconds when the
two high bandwidth untagged UDP flows (unresponsive CBR)
join transmitting at a total of 10Mbps, about 40% of the link
bandwidth. During 0-10 seconds, when 25 TCP and 10 tagged
(flow-contxolled MM APP) flows were competing for the
bandwidth, it was somewhat unfair as a tagged flow got an
average of 37% more bandwidth than a TCP flow, but RED was
able to manage the bandwidth. However, when the untagged
UDP blast came into the system, RED was totally unable to
manage bandwidth. The 2 untagged UDP flows got most of the
bandwidth they needed (average of 4.68Mbps out of 5Mbps), and
the remaining flows used the leftover bandwidth. Especially, the
25 TCP flows got severely punished and transmitted at an average

244

of 293Kbps per flow as they often went back to slow start and
even timed out. Fairness got worse as 30 more TCP flows joined
at 20 seconds and experienced starvation.

m . m ~

~i ~i ~i iii i ii iii iii iii

. . . . ,~ -~i]i][I
o.~am 10.a~8lo lo.aoll~ O.SOgW 10.a~Ooo ap-aoBno

(a) RED (b) CBT

li ' l l~,
• r/O..tlgP
o ~

J.. ll.......[....;:.. J...i

~o ii[[i - ~ i] - . •

(c) D-CBT (d) D-CBT with ChiPS

Figure 8. Average Per-Flow Throughput for TCP,
Tagged UDP and Untagged UDP Classes under RED,
CBT, D-CBT and D-CBT with ChEPS

Figure 8 (b) shows that CBT can avoid the great unfairness of
RED using fixed thresholds for the UDP classes. However, CBT
was not assigning the output bandwidth to each class as expected.
When designing the simulation, we set the UDP thresholds such
that during 0-10 seconds each tagged UDP flow should get about
725Kbps on average. During 10-20 seconds, we expected that
each tagged flow's average bandwidth would remain the same and
each untagged UDP flow would get an average of 750Kbps.
Also, we expected that during 20-30 seconds, the tagged and
untagged flows would get a large portion of the bandwidth the
same as during 10-20 seconds and the TCP flows would get much
less than the fair share during this period. However, the
simulation result shows that the tagged UDP class got more
bandwidth than the expected values especially during the last
period, while the untagged UDP class got much less bandwidth
than expected.

We found that this is mainly due to how and when CBT updates
each UDP class threshold and RED queue average. CBT updates
each UDP class average only for incoming packets that belong to
the class, and the RED unit updates its queue average for all
incoming TCP packets and for UDP packets that passed an
appropriate threshold test. Therefore, the class averages and the
RED queue average are almost independently updated at different
speeds that are closely related the number of incoming packets
that belong to the class. In addition, the RED average has a
higher chance of being updated faster than the UDP class
averages. In this situation, which we call unsynchronized
weighted-average updates, whoever (i.e. a class) updates its
weighted-average more often will get less bandwidth by having a
larger weighted-average than the average of others for the same

amount of class output bandwidth, and the output bandwidth is
controlled using the averages at the UDP threshold test units.

Figure 9 shows this effect by comparing two situations where a
UDP class that has an initial class weighted-average of 1, a weight
of 0.1 and a class threshold of 1.02, is experiencing two different
incoming packet rates. Figure 9 (a) is the case when the incoming
packet rate is 0.5 packets per packet transmission delay, and
Figure 9 (b) is the ease when the class is receiving packets at the
rate of 1.0 packets per packet transmission delay. In this example,
it is assumed that the traffic sources are unresponsive CBR
applications. One thing to note in the figure is that the class
average shown at the left bottom of each queue in each state is its
value before making the enqueue admission decision for an
incoming packet at that state. As you can see in the figure, as the
number of incoming packets for a class increases, packets are
enqueued in a bursty manner, and more importantly, its class
average gets larger. As the average is updated more frequently,
not only is a newly enqueued packet added to the average (with
the weight of 0.1), but also the existence of the other already
enqueued packet are added to the average. For example, the
existence of the first packet is added to the average 2 times more
for the second situation than for the first situation. Note that
Figure 9 (a) enqueues more packets but has a lower class average.

1,0 (hli0 0.90 0.91 0,92 0,93 0,03

Wtdght = 0.1 Oass T l l r e ~ d :~ 0,1 I~lqueued Pactal @ ~ 0 4 1 1 P @

(a) Incoming Packet Rate = 0.5 pkts / pkt-transndssion-delay

1.0 (Intt) 0.90 0.91 1.1~" 1.22 1.30 1,27 1.14 1.03 !.02 +

Wetght m 0.1 Clau Tl-aeah~ld m 0.1 l~nqueued l~ekets O ~ l l m ' O

(b) Incoming Packet Rate = 1.0 pkts / pkt-Uansmtssion-delay
(Dropped packets are not shown)

Figure 9. A CBT Class's Weighted Average under
Two Different Incoming Packet Rates

The weighted-average calculation method works fine when the
purpose of measuring an average queue size is to detect
impending congestion as in RED. However, when the method is
used to assign bandwidth to different classes of flows by
comparing each class' weighted-average number of enqueued
packets, we have determined that all the weighted-averages should
be updated at the same time and at an equal frequency to give a
correct output bandwidth utilization ratio among the classes. In
the case of CBT, by measuring each UDP class average and the
RED average independently, the classes' bandwidth utilization
could not measured correctly by comparing the class averages.
By comparing the fairness measurement in Figure 8 (b) and
CBT's outbound queue averages in Figure 10, especially for 20-
30 seconds, one can easily see that CBT's attempt of using
unsynchronously updated weighted-averages to regulate class

245

bandwidth was misleading. Figure 10 indicates that during 20-30
seconds, 10 tagged flows used an average of about 2.5 packet-
spaces in the queue that is 0.25 packet-spaces per each flow, and
the 2 untagged flow used an average of about 0.6 packet-spaces
that is 0.3 packet-spaces per each flow. However, as shown in
Figure 8 (b), each tagged flow used about 657 Kbps of bandwidth
and each untagged flow used about 318 Kbps, about one half of
the per-flow bandwidth of a tagged flow.

CBT Queue Averages (RED_AVG, TAG AVG, UTAG_AVG)

5.2 Jain's Fairness Measurement
Figure 11 visualizes the simulated systems' fairness on individual
flows using Jain's Fairness Index, where the periodic (0-10, 10-20
and 20-30) average throughput of each individual flow was given
as input to Jain's equation. Jain's fairness measurement shows
that the simulated system that uses RED queue management fails
to fairly assign bandwidth to each individual flow from 10
seconds when the unresponsive flows join in the system. The low
Jain's index value for the RED system indicates that some flows
are experiencing severe starvation during 10-20 seconds and even
more severe starvation during 20-30 seconds when 30 extra TCP
flows join.

$ecends

Figure 10. CBT Queue Averages - The top line is
the RED average, the middle is the tagged UDP
average and the lower is the untagged average.

From the above observation, we conclude that the current CBT
design can only prevent a great unfairness caused by unresponsive
or misbehaving flows, and it needs some adjustment on weighted-
average calculation. Indeed, we tried the average calculation
method that is used in D-CBT in CBT and got a much better
result, that is the ratio between the three averages indicates the
ratio between the actual classes' bandwidth utilization. However,
we did not include the result in this paper, since the method is
used in only D-CBT and we are presenting D-CBT in the next
paragraph.

Figure 8 (c) shows the D-CBT results, which indicates that D-
CBT fairly managed bandwidth during all periods by dynamically
allocating the right amount of output queue space to each flow
class. It also shows that by updating each class and RED average
at the same time in a synchronized manner, the ratio between the
averages is a good indicator of the ratios between each class'
bandwidth utilization. One thing to note in the figure is that
although we strictly regulate the untagged class by assigning a fair
threshold calculated from RED's minimum threshold, the
untagged class did get most of its share. This is because the high
bandwidth untagged (unresponsive) packets were allowed to enter
the queue without a threshold test, when RED indicated no
congestion.

Figure 8 (d) shows the result of D-CBT with CHIPS. The result
confirms that CHIPS, when used with D-CBT, does not affect
fairness between each class of flows, due to the virtual queue and
D-CBT's self adjusting capability described in Section 2.2. In the
simulation, the ratio between tagged flows and all flows was about
28% during 0-20 seconds, and was about 15% during the last 10
seconds.

Jain's Fairness

1.0

0 9

08 i 0.7 m
o.8
0.5
o.,
0,3

0.1 ~i
0 .0

0-10Sec 10-20$ec 20~30Se¢

• R E D
• CBT
[] D-CBT
[] D-CBT-ChlPS

Figure 11. Ja in ' s Fairness Comparison

The system that uses the CBT queue management mechanism was
fair overall in distributing bandwidth to each flow. However,
during 20-30 seconds, the system's fairness was degraded because
the 10 tagged (multimedia) flows got about twice as much
bandwidth as the other flows. One thing to note is that CBT's
fairness was pre-engineered. In a circumstance where traffic mixes
change a lot, CBT might show more degraded fairness.

On the other hand, the systems that use D-CBT or D-CBT with
CHIPS were dynamically adjusting to changing flow mixes, and
were very fair not only to the classes of flows but also to
individual flows as Jain's index numbers indicate. Jain's fairness
measurement results on D-CBT and D-CBT with CHIPS also
reconfirmed that CHIPS did not degrade the system's fairness.

5.3 Analysis of CHIPS
Now that we have shown that D-CBT outperforms RED and CBT
in managing bandwidth, and that the use of CHIPS does not
degrade the performance of D-CBT, this section presents the
performance of CHIPS on multimedia jitter and TCP throughput.
Figure 12 shows tagged UDP (or multimedia) jitter by comparing
a MM_APP application's end-to-end frame delay under D-CBT
and D-CBT with CHIPS.

The result indicates that CHIPS does improve tagged stream jitter
by inserting tagged packets into the line of the queue to which the
RED average points on transient congestion. Under CHIPS, the
maximum tagged-UDP jitter was about 5ms (36ms - 31ms) while
it was about 12ms (43ms - 31ms) under normal D-CBT. Noting
that the maximum threshold of RED was set to 15 packets, which
gives about 3ms (15pkts * 8Kbits / 25Mbps) of queuing delay,
CHIPS was able to regulate the maximum tagged stream jitter
around the queuing delay of the RED's maximum threshold.

246

U t~ame DOI~ undw Omlo O.CBT

44 wD.COT

~:l ,dl,. h.l~ i,
],~1 IIIIIIIIIII IIIIII, , , II,d .t d,
|~ I I1111111111, HIIIbllhll IJ,IIL,.,,L dtll lMIlI,H J,I W

i : i l t i i m m
= ~ , ' . . " - - ~ , , ~ " - " ~ , .~. : ,

0 IS 10 111 30 B 190

akss Jadlu "fl me tgNonde)

MM./II~ Panlo flalg/und~ t)~m'wl~ OaPO

I:
~o di,h,II h Ihtllhlt~llh, hll,l.llt~tll,~[t~tL~l~ ~

I"_ jj,,, m'nml
0 19 10 I l l 2 0 3 5 3 0

(a) Basic D-CBT (b) D-CBT w/CHIPS

Figure 12. CHIPS Effect on Multimedia Jitter

We believe that CHIPS effect on improved multimedia jitter could
be very significant because of the following two reasons. First,
what we show in Figure 12 is the jitter gain due to a single router.
When multiple routers are involved, the jitter gain due to CHIPS
could be larger. Second, in the simulation, we used multimedia
frames that are the same size as that of a network packet, meaning
that no frame fragmentation occurs in the IP layer. Assuming that
a multimedia application uses frames that are larger than a
network packet and are chopped into multiple packets in the
network, the jitter improvement due to ChIPs could be even more
significant, since the multimedia packets have a better chance to
be transmitted close to each other at rnuters. Thus, we believe
that the potential for ChIPs to improve multimedia jitter is larger
than shown in our experiments.

Table 1. TCP Packet Accounting (0 ~ 30 Seconds)

D-CBT 66,648 pkts [4.46 % 17,773 Kbps
1

I D-CBT w/ CHIPS 66,386 pkts 4.44 % 17.703 Kbps

Table 2. Tagged (MM) Packet Accounting (0 ~ 30 Seconds

D-CBT 21,126 pkts 11.85 %

D-CBT w/
CHIPS 21,519 pkts 12.95 %

lastly, we present TCP packet accounting and tagged packet
accounting for the simulation in Table 1 and Table 2. Table 1
shows the TCP packet drop rate and throughput under CHIPS is
very compatible with those of basic D-CBT. The TCP throughput
under ChIPs was about 99.6% of the throughput under basic D-
CBT. This indicates that CHIPS, when used along with D-CBT,
may not significantly affect the TCP throughput. Comparing the
TCP throughput loss with the multimedia jitter gain, CHIPS
compensates 14.3% ((42ms - 36ms) / 42ms * 100) of multimedia
jitter gain for 0.4% of TCP throughput loss for the simulation.

Table 2 shows the multimedia packet drop rate of the system that
used ChIPs is very compatible with that of the system that used
basic D-CBT. This result shows that ChIPs has a high potential
to improve end-user multimedia performance (perceptual quality)
on the Internet by improving jitter without increasing the

multimedia packet drop rate, which is another important factor in
multimedia perceptual quality and for congestion control and
system utilization.

6 . C O N C L U S I O N
In this paper, we have presented the design and evaluation of our
proposed router queue mechanisms, Dynamic Class-Based
Threshold (D-CBT) and Cut-In Packet Scheduling (CHIPS), by
comparing their performance with that of RED and CBT. D-CBT
is a new active queue management mechanism that addresses the
problem of fairness by grouping flows into TCP, tagged (flow-
controlled multimedia) LTDP and untagged (other) UDP classes
and regulating the average queue usage of the UDP classes to
their fair shares. CHIPS is a multimedia-favored lightweight
packet scheduling mechanism that can substitute the FCFS
enqueue style packet scheduling part of a RED-managed queue
for D-CBT and possibly for other RED-like queue mechanisms.

As expected, RED, previously shown to be fair among TCP flows,
showed an extreme unfairness with mixed traffic. CBT that uses a
fixed threshold on UDP classes was able to avoid extreme
unfairness. However, during the analysis, we found that CBT
suffers from "unsynchronized weighted-average updates". That is,
the ratio between independently updated UDP class averages and
RED average does not correctly indicate the actual class
bandwidth utilization ratio, since whichever class updates the
average more frequently will have higher weighted-average than
the others will, although they all use the same amount of
bandwidth.

D-CBT fixes CBT's problem by synchronizing all the average
updates, and better manages bandwidth by dynamically
determining the UDP thresholds to cooperate with RED by fairly
assigning the output bandwidth to each class for all traffic mixes.
That is, through class-based accounting, D-CBT fairly protects
TCP from the effect of UDP flows and also fairly protects tagged
UDP flows from untagged flows. We have also shown that
CHIPS, when used with D-CBT, can improve multimedia jitter
without degrading fairness.

There exist many possible areas for future work and still remain
many performance aspects to be evaluated. Recently, we
implemented CBT and D-CBT into the Linux kernel [9], which
currently works both for IPv4 and IPv6. Our current ongoing
work is in measuring and analyzing the overheads of D-CBT
using the Linux implementation and in optimizing it. Another
area for future work is to measure the effect of the threshold test
of D-CBT on multimedia QoS with currently available responsive
multimedia applications, since bursty multimedia packet drops
when the class average reaches the class threshold may degrade
the multimedia quality noticeably.

Another possible future project would be to extend this study to
evaluate the limitation of CHIPS on the fairness and the link
utilization offered by D-CBT. As noted in Section 2.2, CHIPS
introduces an additional delay to other traffic which may affect
TCP throughput. Therefore, in order for the use of CHIPS to be
more practical, future work suggests an extended study to
determine the maximum average ChIPs enqueue ratio between
tagged and the other classes of flows without degrading fairness
or link utilization. An additional project would be to evaluate D-
CBT and CHIPS under the environment where fragile and robust

247

TCP connections as well as multimedia connections with different
end-to-end delays coexist in the system. Another study that we
could not do due to the lack of time but suggest as a future work
is to compare the performance of the D-CBT with that of FRED.
We expect that D-CBT could give better throughput performance
for tagged UDP flows than FRED, since it frees flow-controlled
multimedia flows from the strict per-flow punishment.

7. ACKNOWLEDGMENT
The authors are grateful for the detailed suggestions by several
anonymous reviewers.

8. REFERENCES
[1] Bernet, Y. et. AI. "A Framework for Differentiated Services",

February 1999, Internet Draft, drafr-ieff-diffserv-framework-
02.txt

[2] Chung, J. and Claypool, M., "Better-Behaved, Better-
Performing Multimedia Networking", SCS Euromedia
Conference, Antwerp, Belgium, May 8-10, 2000

[3] Claypool, M. and Tanner, J., "The Effects of Jitter on the
Perceptual Quality of Video", ACM Multimedia Conference,
Volume 2, Orlando, FL, October 30 - November 5, 1999

[4] Floyd, S., "TCP and Explicit Congestion Notification",
Computer Communication Review, October 1994

[5] Floyd, S. and Fall, K., "Promoting the Use of End-to-End
Congestion Control in the Interuet", 1EEE/ACM
Transactions on Networking, February 1998

[6] Floyd, S. and Jacobson, V., "Random Early Detection
Gateways for Congestion Avoidance", IEEE/ACM
Transactions on Networking, August 1993

[7] Floyd, S. and Jacobson, V., "Link-sharing and Resource
management Models for Packet Networks", IEEE/ACM
Transactions on Networking, Vol. 3 No. 4, August 1995

[8] Jain, R., "The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling", John Wiley &
Sons, Inc., New York, NY, 1991

[9] ~ d , N., Maldonado M., Mercado, E., Chung, J. and
Claypool, M., "Class-Based Router Queue Management for
Linux", Technical Report WPI-CS-TR-O0-15, Computer
Science, Worcester Polytechnic Institute, April 2000

[10] Lin, D. and Morris R., "Dynamics of Random Early
Detection", In Proceedings of SIGCOMM '97, Cannes,
France, September 1997

[11] Multimedia Communications Forum, Inc. "Multimedia
Communications Quality of Service", MMCF/95-010,
Approved Rev 1.0, 1995, URL:
hitp:llwww.luxcom.comllibraryl2OOOInnn_qoslqos.htm

[12] Pards, M., Jeffay, K. and Smith, F. D., "Lightweight Active
Router-Queue Management for Multimedia Networking",
Multimedia Computing and Networking, SPIE Proceedings
Series, Vol. 3020, San Jose, CA, January 1999

[13] Shreedhar, M. and Varghese, G., "Efficient Fair Queueing
using Deficit Round Robin", In Proceedings of SIGCOMM
'95, Boston, MA, September 1995

[14] Stoica, I., Shenker, S. and Zhang, H., "Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocation in High Speed Networks", In Proceedings of
SIGCOMM '98, Vancouver, Canada, September 1998

[15] VINT, "Virtual InterNetwork Testbed, A Collaboration
among USC/ISI, Xerox PARC, LBNL, and UCB", URL:
http://netweb.usc.edu/vint

248

