
(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

Adaptive Forward Differencing for Rendering Curves and Surfaces

Sheue-Ling Lien, Michael Shantz and Vaughan Pratt

Sun Microsystems, Inc.
2500 Garcia Avenue

Mountain View, CA 94043

A b s t r a c t
An adaptive forward differencing algorithm is presented tot
rapid rendering of cubic curves and bicubic surfaces. This
method adjusts the forward difference step size so that
approximately one pixel is generated along an ordinary or
rational cubic curve for each forward difference step. The
adjustment involves a simple linear transformation on the
coefficients of the curve which can be accomplished with
shifts and adds. This technique combines the advantages of
traditional forward differencing and adaptive subdivision. A
hardware implementation approach is described including
the adaptive control of a forward difference engine. Sur-
faces are rendered by drawing many curves spaced closely
enough together so that no pixels are left unpainted. A sim-
ple curve anti-aiiasing algorithm is also presented in this
paper. Anti-aliasing cubic curves is supported via tangent
vector output at each forward difference step. The adaptive
forward differencing algorithm is also suitable for software
implementation.

CR Categories and Subject Descriptors: 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modelling
- Curve, surface, solid, and object representations;
Geometric algorithms, and systems; 1.3.3 [Computer
Graphics]: Picture/Image Generation - Display algorithms;
1.3.7 [Computer Graphics]: Three-dimensional Graphics
and Realism - Color, shading, shadowing, and texture.

Additional Key Words and Phrases: image synthesis, adap-
tive forward differencing, parametric curves and surfaces.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1987 ACM-0-89791-227-6/87/007/0111 $00.75

I n t r o d u c t i o n
Parametric curves and curved surfaces are a common form
of surface and object representation. In particular, non-
uniform rational b-splines have gained popularity for
mechanical CAD applications. Since high speed hardware
capable of rendering vectors and polygons is widely avail-
able, high speed curve and surface rendering is usually done
by subdividing and rendering them as straight lines or planar
polygons. For conics, non-parametric, incremental solutions
of the implicit equations[7, 8, 3, 1] are well known and a few
hardware curve generators have been built. Less progress
has been made on hardware techniques for rendering higher
order curves and surfaces. Research has focused largely on
subdivision methods for rendering and modelling.J2,6]
Recursive subdivision for curve and surface rendering is
expensive to implement in hardware due to the high speed
stack memory requirements and the fact that frame buffer
memory access is easier to optimize if the pixels are being
written to adjacent addresses.

Lane and others[5] developed scan line methods for render-
ing bicubic patches. They used Newton iteration to compute
the intersections of the patch with the plane of the scanline.
These approaches were not intended for, nor are they simple
enough for hardware implementation.

Our adaptive forward difference (AFD) technique is an
extension of well known[4] ordinary forward differencing
and is related to the adaptive subdivision methods in that it
adjusts the step size to the next pixel by transforming the
equation of the curve to an identical curve with different
parameterization. AFD differs from recursive subdivision or
traditional forward differencing by generating points sequen-
tially along the curve while adjusting the parameterization to
give pixel sized steps. AFD allows ~t surprisingly simple
hardware implementation, and is compatible with frame
buffer memory interleaving for high performance.

This paper develops the theory of adaptive forward dif-
ferencing and covers several related aspects and problem
areas.

1) Reparameterization of cubic or rational cubic curves

2) Drawing surfaces by spacing curves 8s apart

3) Generating anti-aliased curves

4) Trimming and image mapping on patches

111

~ , , ~ 4 SIGGRAPH '87, Anaheim, JuDy 27-31, 1987

With special purpose hardware for rendering these curves
and surfaces directly, the usual subdivision overhead is
reduced, and the appearance of the rendered objects is more
accurate. The method lends itself to hardware fast shading
techniques by functional approximations of the unit normal
function over a patch.[9]

Principles
The method of adaptive forward differencing unifies the
processes of recursive subdivision and forward differencing.
In this section we present the principles underlying the
method. The key insights are that these processes axe both
instances of linear substitution, and that efficiency is optim-
ized by a choice of basis appropriate to the mix of substitu-
tions.

We consider curves and surfaces in a space S, taken for the
sake of illustration to be R 4 (homogeneous coordinates
x,y,z,w). A parametr ic object in S is a function f :X-~S
where X is a set constituting the parameter space. The
object is a curve, segment, surface, or patch when x is
respectively the set R of reals, the real interval [0,1], the real
plane R 2, or the unit square [0,1] 2. We take s and t for the
parameters, making f either f (t) or f (s ,t).

A linear substitution transforms f (t) into f (at+b) and f (s,t)
into f(as+b,et+d), expressible as the composition o f f with a
linear or bilinear function respectively. The geometric effect
of linear substitution is to translate and scale a segment or
patch within the curve or surface containing it. Any segment
of a curve can be mapped to any other segment of the same
curve by some linear substitution, and likewise for patches.

Let us denote by L the linear substitution t/2 and by R the
linear substitution (t+l)r2. Then L and R act on a segment C
to yield the " le f t " and "r ight" halves LC and RC of C.
These are the transformations associated with recursive sub-
division; they may be applied recursively to subdivide a
curve segment into quarters LLC,LRC,RLC,RRC (Figure l(a)),
eighths, etc.

Let us denote by E the linear substitution t+l. Then E acts
on a segment C to yield its "right neighbor" EC. One use
for E is as the forward difference operator. To render a long
segment C, start with a very small initial segment D of C
(e.g. D=LL.--LC) and generate the remaining (also small)
segments of C by El) ,EED ,EEED, •. •. This process is usually
called forward differencing.

Another use for E is as a substitute for R in recursive subdi-
vision: we may represent R as EL, as illustrated by the top
half of Figure l(b). However, rather than computing LC and
RC separately we can compute LC once and then apply E to
LC to get the right ha l l allowing us to discard C after apply-
ing L to it and so avoiding a "stack pop" when the time
comes to apply R. The lower half of Figure l(h) shows that
this can be extended down another layer of recursion: we can
get to RLC, LRC, and RRC by starting from LLC and repeat-
edly applying E, thanks to the additional identity ER = LE
(i.e. EEL = LE) which allows E to make the jump from RLC to
LRC. This ability of E to run across the whole tree holds at
any depth. At sufficient depth the method turns into ordinary
forward differencing as per the previous paragraph.

A disadvantage of forward differencing is that it may not
traverse C with uniform velocity. Recursive subdivision

C

LC

LLC RLC

RC

LRC RRC
(a)

LC ~- RC

(b)

LRC ~ RRC

Figure 1. Relationship of linear substitutions L, R, and E.

avoids this difficulty by stopping at different depths in dif-
ferent parts of the reeursion tree. We may transfer this
advantage of recursive subdivision to forward differencing
by inserting an occasional L or L -~ (the substitution 2t) into
the stream of E 's whenever the velocity is too great or too
small respectively. This has the effect of changing our level
in the recursion tree as we forward-difference across it. We
call this technique adaptive f o r w a r d differencing.

In order to implement the above we require concrete
representations for C, L, E, etc. We do this in the usual way:
independently for each dimension of s take C to be a poly-
nomial in t (and s), regard the polynomial as a point in a
vector space of dimension one more than its degree, regard
linear substitutions as a particular kind of linear transforma-
tion of this space, and perform the transformations in an
appropriate basis for the space. One key property of linear
substitution is that it does not increase polynomial degree,
the other is that its action on a polynomial viewed as a vector
is indeed that of a linear transformation.

While any basis will do, certain bases favor certain transfor-
mations. For example the total number of l ' s in the binary
representation of a particular transformation may be quite
small in a particular basis, permitting the transformation to
be carried out with just a few shifts and adds. Catmull [2]
gives a basis for which L and R can be cheaply computed
with only three adds and four shifts.

1 o o, 8] Lc = 0 1/4 0 00
1/2-1/8 1/2
0 1/8 0

[i 71 1/2-1/8 1/2
Rc = 1/8 0 1

0 1
0 0 l/4J

112

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

A

0
Figure 2. Block diagram of an AFD unit.

B 1
C D] >

0

However, for forward differencing neither Catmull 's basis
for L and R nor any of the other bases usually considered for
recursive subdivision are particularly well suited to the
matrix representation of E. The best basis for E is the for-
ward difference basis which allows parallel additions suit-
able for a pipeline implementation.

Adaptive F o r w a r d Difference Algorithm
For adaptive forward differencing we require a basis that
works well with L and L -~, especially with E, on the ground
that E occurs significantly more often than L in practice.
The following set is the forward difference basis which is
considered to be the most appropriate.

B3 : l (t3-3t2+2t) = 6 t (t - 1) (t - 2)

1 2 t 1 B 2 = ~ (t -) = ' ~ - t (t - l)

B l = t

B 0 = I

The E matrix of this basis requires only three adds which can
be done in parallel.

Ii °ll E=

The L and L < matrices can be implemented with simple
shifts and adds.

Ii00o /i001104 L = 1/2-1/8 1 L- l=
0 1/4 -u81
o 0 t / sJ o o

This algorithm is implemented in hardware called an AFD
unit. An AFD unit is a third order digital differential
analyzer which implements an adaptive forward difference
solution to a parametric cubic function of t. The parameter t
varies from 0 to 1 along the curve. The dt step size for t is
adaptively adjusted so that the curve steps along in approxi-
mately one pixel steps in screen coordinates. Figure 2 shows
a block diagram of an AFD unit. t

t Sun Microsystems, Inc. is pursuing patent protection in
the United States and abroad on the technology described in
this paper.

Four AFDUs can be used to generate the x,y,z,w values of
the pixels along a cubic curve. Figure 3 shows the 4
required AFDUs and the divide by w circuit necessary for
rendering rational curves. The filter unit is the controller for
the adaptive step size, and performs other functions.

X AFDU

Y AVOU I

Z AFDU I

I con o,

Pixel

Filter

x / ~
r

y/w To
- Frame

Buffer z /w

Arc length

Figure 3. Block diagram of the AFD hardware. Each AFDU
computes a 3rd order parametric function.

1. R e p a r a m e t e r i z a t i o n

A parametric cubic function f(t) can be represented in for-
ward difference basis as

f = aB 3(t)+bB 20)+cB ~(t)+dB o(t)

A cubic curve is defined by four cubic functions x(t), y(t),
z(t), and w(t), each implemented by a separate AFD unit.

x (t) = axBB+b:,B2+cxB l+d,B o

y (t) = ayB3+byB2+cyB l+dyB o

z (t) = a, B 3+b~ B 2+c, B l+d, B o

w (t) = aw B 3+b,, B 2+cw B i+d~B 0

The coefficients a, b, c, and d are loaded into the 4
coefficient registers of each AFD unit. At each clock event
the parameter t increases by dt and the four AFDUs generate
the coordinates of one pixel.

If the x,y address step, corresponding to the dt step, is more
than one pixel, dt is divided by two (adjusted down) so that
each clock generates approximately one pixel along the
curve. If the x,y address step is less than 112 pixel then dt is
doubled (adjusted up) to increase the change in x,y coordi-
nates.

113

• SIGGRAPH '87, Anaheim, July 27-31, 1987
I ~ ~ 1

To reduce dt by half, we transform the cubic functions x(t),
y(t), z(t), w(t) by applying the L matrix:

x ' (t) = x (2)= ' " " " a ~ 8 3 + b xB2+c z B l + d xBo

y'(t) = y (2) = a'~B3+b'~n 2+c" fl~ ~+a'yB o

z ' (t) = 2 (2)

w ' (t)=w(-~)

The coefficients of the two sets of cubic functions are related
by

1

1 1 t," = ~ -b ~ a

1 1 . 1
c p = --~c-gO+--~a

d ' = d

TO double dt, we transform the cubic functions by applying
the L -1 matrix:

x'(t) =x(2t)

y ' (t)= y(2t)

z'(t) = z (2t)

w "(t) = w (2t)

Here the coefficient transformation is

a" = 8a

b" --- 4b +4a

c" = 2c +b

aV = d

If the step size is correct then we apply the E matrix.

x'(t) =x(t+l)

y'(t) = y (t+l)

Z'(t) = Z (t+ l)

w'(t) = w (t + l)

The AFD units in this case generate a new pixel and advance
to the next pixel with the corresponding coefficients
transformed by

a" =a

b" = b+a

C t ~ C +b

d" = d+c

The adaptive forward differencing mechanism is illustrated
below.

t=0

adjusted up / ~ _ .

Figure 4 Operations of "adjust up", "adjust down", and "for-
ward step".

We have measured the percentage of steps requiring an
adjust up or adjust down using the Utah teapot at various
scale factors. Drawing the cubic curves comprising a wire
mesh on the blcubic patches making up the surface involved
73,000 forward steps, and 600 adjustment steps. The over-
head for the adaptive nature of the forward difference
scheme is therefore quite small. It increases when the curves
being drawn have large accelerations.

2. I n i t i a l S e t u p

To render a cubic curve C we first convert to the forward
difference basis. We then start with a small initial segment
D of the curve by applying Ln=L.LL to the curve C. The
initial scale down is not really required. However, if not
done, the adaptive mechanism may adjust down many times
until the pixel step size is approximately one pixel before it
starts rendering. In practice the parameterization is scaled
down before loading into the AFD units to be within the
hardware register precision. The AFDUs adjust from there.

3 . P i x e l f i l t e r i n g

The pixel filter performs five functions. 1) It compares the
current pixel coordinates with the previous pixel coordinates
generated by the AFD units and tells the AFD units whether
they should adjust up, adjust down, or step forward to the
next pixet. 2) The pixel filter also detects and replaces
"elbow" sequences of the form x,y to x ,y+l to x + l , y + l with
a diagonal move x,y to x + l , y + l . This is done to improve the
appearance of generated curves. 3) It also generates arc
length along the curve generated by the AFD units. It adds 1
to the are length if the curve steps either horizontally or vert-
ically and adds 1.414 if the curve steps diagonally. The out-
put arc length is used to address the pattern memory for
mapping texture along curves. 4) The filter unit performs
clipping on t, x, y, and z. t is cl ipped between a tmin register
and a tmax register to assist in rendering trimmed patches.
x, y, and z are clipped to their respective rnin and max regis-
ter values. 5) The filter generates the instantaneous tangent
and normal vectors for the purpose of anti-aliasing curves.

The pixel filter thus acts as the controller for the AFD units
and also computes arc length, and antialias weights.

114

~ Compute r Graph ics , Vo lume 21, Numbe r 4, Ju ly 1987

4. Render ing conics and rat ional cubi ts

One of the AFI) units generates the homogeneous coordinate
w as a parametric cubic function of t. For rational cubic
curves x, y, and z must be divided by w at each point. This
is accomplished by using a reciprocal unit which computes a
truncated Taylor series approximation of 1/w.

The reciprocal 1/w is computed as follows which can be
easily implemented with look-up tables, adders and muff-
pliers.

1 1 8
W W 0 W0 2

The following example shows how to set up AFDUs to draw
an ellipse with radius r~, ry centered at <x0, y0 > and rotated
by an angle 0. A half ellipse with radius rx, ry can be defined
in parametric form as

t (l - t)
X l (t) = r x t2._t+0.5

0.5-t
y l (t) = ry tz_t+0.5

We can get the other half of the ellipse by mirroring the
image. By rotating the ellipse by an angle 0 and then
translating it to <x0, yo>, we get a set of cubic functions
which describe an ellipse with radius r,, ry centered at xo, Yo
and rotated by an angle 0:

x (t) = r , t (l - t) cos0+ry (0.5-t)sin0+x o(t 2-t +0.5)

= (X o - r ~ eosO)t z + (r~ cosO-r:~ sinO--Xo)t

+ 0.5(ry sin0+xo)

y (t) = -r~ t (1-t)sinO+ry (0.5-t)cos0+yo(t L-t +0.5)

= (yo+rzsin0)t 2 - (r~sinO+rycosO+yo)t

+ 0.5 (ry cos0+y 0)

w (t) = t2--t +0.5

By converting the above cubic functions to DDA basis, we
get a set of coefficients

a~ = O

b= = 2(Xo-r~cosO)

cx = (x0-rzcos0) + (rzcosO--rysinO-Xo)

d, = 0.5(ry sin0+x0)

% = 0

t,, = 2(y0+~, sin0)

cy = (y 0+rz sin0) - (r x sinO+rycosO+yo)

dy = 0.5(ry cos0+Y0)

aw = 0.0

t~, = 2.0

c w = 0.0

d~ =0.5

We can set up the AFD units with the above coefficients for
drawing the ellipse (see Figure 6).

5. Anti-al iasing cubic curves

AFD gives a simple means of generating the instantaneous
tangent vector ¢t, ty, along the curve by simply subtracting
the last point from the previous one. The instantaneous
tangent vector gives an indication of whether the current
pixel is in an x_major (t~>ty) or y_major (tz¢ty) slope. An
approximate distance of the current pixel away from the
center curve is computed from this tangent and the fractional
portion of the pixel addresses as follows. Here c(is the ratio
of variation of intensity, and c(is used to blend the curve
color and the background color. This is a rather crude
approximation but gives surprisingly improved curve
appearance. Figure 5 shows the result of this curve anti-
aliasing method drawn with the software simulation.

If the tangent vector indicates x_major, we compute

(f,-0.5) + ct = t~ (f'-0"5)

where <t~, ty > is the tangent and f~ and fy axe the fractional
portion of the pixel x and y address. If cc is positive, then the
intensity of pixel <x,y> is blended by (l.0-c0, and pixel
<x,y+l> by c~. In case of a negative c~, pixel <x,y> is
blended by (l.0+c0, and pixel <x,y-1 > by -c~. For y_major, c~
is

t~
a = C/ , -o .5) + Z - ~ : , - 0 . 5)

In this case, pixel <x,y> is blended by (1.0--c0, and pixel
<x+l,y> by c~ if c~ is positive; otherwise pixel <x,y> by
(1.0+cx) and pixel <x-l,y> by -c~.

One advantage of this anti-aliasing scheme is that it applies
as well to both nonrational and rational curves. Figure 6
shows a set of anti-aliased rational curves rendered with this
scheme.

S h a d i n g B i c u b i c P a t c h e s
The AFD technique can be used to render shaded, curved,
trimmed patches, generate anti-aliased curves, and map tex-
ture and imagery onto curves and surfaces as a function of
either are-length or parameter.

Shading and image mapping onto bicubic or rational bicubic
surface patches is performed by drawing many curves very
close to each other. Each curve is a cubic in t formed by set-
t ings at a constant s=s~. We therefore need to find the spac-
ing 85 from one curve to the next so that no pixel gaps exist
in between them. To compute the spacing 8a in between the
current curve f (s = s i , t) and the next curve, we run a series of
testing curves in the orthogonal direction (i.e. s direction) at
t =(0.0,0.125 1.0) and examine the step size used by those
curves at the positions s=s i. T h e minimum size used is then
chosen as the spacing for the next curve f (s~+Ss,t). When the
85 gets smaller, it indicates that the next curve should be
filled in closer to the current one; when 85 increases, the next
curve can be a little less close.

115

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

We explain next how AFD is used to adaptively adjust the
spacing in between curves. For a bicubic patch F(s , t)
represented in forward difference basis,

F(s , t) = < f x (s , t) , f y (s , t) , f z (s , t) , f w (s , t) >

each $ (s ,t) is a bicubic function of s and t. For example the x
component

fx(s,t)=[Bo(t),Bl(t),B2(t),BB(t)] XloXHXI2XlB /B,<,)I
~2o ~2~ x ~ x2 /B2(~)I

LX3o x~1 x32 x3~j LB3(s)J

where x~j are the x coordinates of the control points of the
patch. A curve at a constant s , f (s=s~, t) , is a cubic function
represented in forward difference basis as

f (s =si,t)=dB 0(t)+cB l(t)+bB z(t)+aB 3(t)

where the four coefficients a ,b ,c ,d are cubic functions of s in
forward difference basis:

d (s)=Xoo B 0(s)+x 01 B 1 (s)+x 02 B 2(s)+Xo3 B B(s)

c (s)=XloBo(s)+x 11 B l(S)+xi2 B2(s)+x13 B3(s)

b (s)=x20 B 0(s)+x 22 B ~(s)+x22 B 2(s)+x23 B 3(s)

a (s)=x3o Bo(s)+x 31B l(s)+x 3z B2(s)+x33 B 3(s)

We apply AFD to these four cubic functions to generate the
value of coefficients for the next curve. When the spacing 8s
for the next curve is the same as the previous one, the E
matrix is applied. If the spacing for the next curve doubles,
L -1 and then the E matrix are applied to double the spacing.
If the spacing halves, we apply L and then the E matrix to
reduce it. We are still examining methods for minimizing
this redundancy through subdivision and tuning of the
adjustment criterion.

Figure 7 shows a Phong shaded Utah teapot rendered on a
1152 x 900 screen with 80 patches using the AFD technique,
for comparison with the equivalent polygon shaded version
in Figure 8 containing 4060 triangles.

Trimmed patches are rendered by scan converting the trim-
ming region in s,t space using the 8s seanline width. (Here a
scanline in s,t space is different from a scanline in the screen
space.) This produces a "scanline" curve segment at each
constant si bounded by one or more tmin, tmax pairs. These
curve segments are rendered with clipping to the appropriate
tmin and tmax. Figure 9 shows a shaded, image mapped,
bicubic patch trimmed with a SUN logo.

Discussion
In rendering curves we set the threshhold of adjustment to be
0.5 and 1.0, i.e. we adjust up if x and y step by less than .5
pixel and we adjust down if x or y step by greater than 1
pixel. Using this threshhold we do not overpaint too many
pixels, and neither do we leave gaps between pixels. Patches
are rendered by filling many curves very close together.
However, using the 0.5 and 1.0 threshhold in rendering a
patch we tend to get missing pixels in the patch. This prob-
lem is solved by reducing the pixel adjustment threshold
down to 0.35 and 0.7, instead of by reducing the spacing in
between adjacent curves. We are currently trying to estab-
lish the optimal adjustment criterion for ensuring no pixel
gaps.

For performance comparison purposes, we used the follow-
ing three schemes to render a wireframe mesh of curves for a
piece of teapot handle on a 512 x 512 screen with ten curves
in each direction: (1) ordinary forward differencing, (2)
adaptive subdivision, and (3) adaptive forward differencing.
In this test, the ordinary forward differencing technique took
8192 forward steps, the adaptive subdivision technique took
3887 subdivisions, and AFD took 49 adjust_up's, 36
adjust_down's and 3910 forward steps. It is obvious that the
ordinary forward differencing technique usually requires
more forward steps than our technique because it uses the
smallest step required for no gaps and cannot adjust to a
longer step when appropriate. Each forward operation takes
three adds, each adjust_up or adjust_down takes 3 adds and
2 multiplies. The first scheme required a total of 24516
adds. Our technique required 11900 adds and 255 multi-
plies. The subdivision technique took a total of 11661 adds
and 15548 multiplies, where a single subdivision requires 3
adds and 4 multiplies.

We used the adaptive subdivision technique and our patch
rendering technique to compare the patch rendering perfor-
mance on rendering a piece of teapot body and a piece of
teapot handle on a 512 x 512 screen. The termination condi-
tion we used in the subdivision technique was to constrain
the minimum bounding box of the control points of a Bezier
patch within 1.0 by 1.0. The subdivision technique on the
teapot body required 86380 subdivisions to fill the entire
patch. Since a subdivision takes 36 adds and 48 multiplies, it
requires approximately 3 million adds and 4 million multi-
plies. Our technique required 708 adjust up, 513 adjust
down, and 218513 forward step operations. Thus AFD used
approximately 0.66 million adds and 3700 multiplies. Our
method has a curve set up overhead of 12 adds per curve - a
total of 6000 adds in this test case, which is negligible. In
the ease of the teapot handle, it took 143379 subdivisions
with adaptive subdivision, whereas the new method per-
formed 537 adjust up, 727 adjust down, and 187386 forward
step operations, i.e., 5.16 million adds and 6.88 million mul-
tiplies against 0.56 million adds and 2528 multiplies.

Clearly, both subdivision and AFD can be implemented with
integer arithmetic given sufficient precision. In both
methods the above multiplies can be performed using simple
shifts. The shifts required for the L and L -~ matrices can be
implemented with "wires" in hardware since all elements are
integer powers of 2. A complete error analysis of a fixed
point integer implementation of AFD is currently being con-
ducted.

The relatively poor performance of adaptive subdivision is
due to the fact that a subdivision operation takes
significantly more computation than a forward difference
operation. This new method has the advantage of producing
picture quality equivalent to adaptive subdivision without
the memory stack management overhead of recursive subdi-
vision and is thus more suitable for hardware implementa-
tion. AFD also makes patch rendering performance com-
petitive with polygon rendering. When doing image map-
ping and patch trimming, our technique operates in s,t space
but polygon methods operate in the screen seanline order,
therefore, our method does not require a transformation from
screen space to image coordinates as the polygon method
does.

116

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

Acknowledgements
The following people contributed greatly to the ideas, simu-
lations, and design of these algorithms: Jerry Evans, David
Elrod, Nola Donato, Bob Rocchetti, Sue Carrie, Serdar
Ergene, Jim Van Loo, Paul Tien, and Mark Moyer.

References

1. Jerry Van Aken and Mark Novak, "Curve-Drawing
Algorithms for Raster Displays," ACM Transactions
on Graphics, vol. 4, no. 2, pp. 147-169, April 1985.

2. Edwin Catmull, A Subdivision Algorithm for Computer
Display of Curved Surfaces, Thesis in Computer Sci-
ence, University of Utah, UTEC-CSc-74-133, 1974.

3. George M. Chaikin, "An Algorithm for High Speed
Curve Generation," Computer Graphics and linage
Processing, vol. 3, pp. 346-349, 1974.

4. Steven A. Coons, Surfaces for Computer-Aided Design
of Space Forms, Project MAC, MIT, MAC-TR-41,
June 1967.

5. Jeffrey Lane, Loren Carpenter, Turner Whitted, and
James Blinn, "Scan Line Methods for Displaying
Parametrically Defined Surfaces," CACM, vol. 23, no.
1, January 1980.

6. Jeffrey M. Lane and Richard F. Riesenfeld, " A
Theoretical Development for the Computer Generation
of Piecewise Polynomial Surfaces," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol.
PAMI-2, no. 1, pp. 35-46, January 1980.

7. M . L . V . Pitteway, "Algorithm for drawing ellipses or
hyperbolae with a digital plotter," Computer Journal,
vol. 10, no. 3, pp. 282-289, Nov. 1967.

8. Vaughan Pratt, "Techniques for Conic Splines," Com-
puter Graphics, vol. 19, no. 3, July 1985.

9. Michael Shantz and Sheue-Ling Lien, "Shading Bicu-
bie Patches," Computer Graphics, vol. 21, no. 4, July
1987.

Figure 5. Comparison of antialiased and ordinary
nonrational cubic curves rendered with adaptive for-
ward difference scheme.

Figure 6. Comparison of antialiased and ordinary con-
ics rendered with adaptive forward difference scheme.

117

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

Figure 7. Adaptive forward difference rendering of the
Utah teapot using 80 patches.

Figure 8. Classical polygon rendering of the Utah
teapot using 4060 triangles.

Figure 9. An image_mapped bicubic patch trimmed
with a SUN logo.

118

