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A b s t r a c t  
An adaptive forward differencing algorithm is presented tot 
rapid rendering of  cubic curves and bicubic surfaces. This 
method adjusts the forward difference step size so that 
approximately one pixel is generated along an ordinary or 
rational cubic curve for each forward difference step. The 
adjustment involves a simple linear transformation on the 
coefficients of  the curve which can be accomplished with 
shifts and adds. This technique combines the advantages of  
traditional forward differencing and adaptive subdivision. A 
hardware implementation approach is described including 
the adaptive control of  a forward difference engine. Sur- 
faces are rendered by drawing many curves spaced closely 
enough together so that no pixels are left unpainted. A sim- 
ple curve anti-aiiasing algorithm is also presented in this 
paper. Anti-aliasing cubic curves is supported via tangent 
vector output at each forward difference step. The adaptive 
forward differencing algorithm is also suitable for software 
implementation. 
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I n t r o d u c t i o n  
Parametric curves and curved surfaces are a common form 
of surface and object representation. In particular, non- 
uniform rational b-splines have gained popularity for 
mechanical CAD applications. Since high speed hardware 
capable of  rendering vectors and polygons is widely avail- 
able, high speed curve and surface rendering is usually done 
by subdividing and rendering them as straight lines or planar 
polygons. For conics, non-parametric, incremental solutions 
of the implicit equations[7, 8, 3, 1] are well known and a few 
hardware curve generators have been built. Less progress 
has been made on hardware techniques for rendering higher 
order curves and surfaces. Research has focused largely on 
subdivision methods for rendering and modelling.J2,6] 
Recursive subdivision for curve and surface rendering is 
expensive to implement in hardware due to the high speed 
stack memory requirements and the fact that frame buffer 
memory access is easier to optimize if the pixels are being 
written to adjacent addresses. 

Lane and others[5] developed scan line methods for render- 
ing bicubic patches. They used Newton iteration to compute 
the intersections of  the patch with the plane of  the scanline. 
These approaches were not intended for, nor are they simple 
enough for hardware implementation. 

Our adaptive forward difference (AFD) technique is an 
extension of  well known[4] ordinary forward differencing 
and is related to the adaptive subdivision methods in that it 
adjusts the step size to the next pixel by transforming the 
equation of  the curve to an identical curve with different 
parameterization. AFD differs from recursive subdivision or 
traditional forward differencing by generating points sequen- 
tially along the curve while adjusting the parameterization to 
give pixel sized steps. AFD allows ~t surprisingly simple 
hardware implementation, and is compatible with frame 
buffer memory interleaving for high performance. 

This paper develops the theory of adaptive forward dif- 
ferencing and covers several related aspects and problem 
areas. 

1) Reparameterization of  cubic or rational cubic curves 

2) Drawing surfaces by spacing curves 8s apart 

3) Generating anti-aliased curves 

4) Trimming and image mapping on patches 
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With special purpose hardware for rendering these curves 
and surfaces directly, the usual subdivision overhead is 
reduced, and the appearance of the rendered objects is more 
accurate. The method lends itself to hardware fast shading 
techniques by functional approximations of the unit normal 
function over a patch.[9] 

Principles 
The method of adaptive forward differencing unifies the 
processes of recursive subdivision and forward differencing. 
In this section we present the principles underlying the 
method. The key insights are that these processes axe both 
instances of linear substitution, and that efficiency is optim- 
ized by a choice of basis appropriate to the mix of substitu- 
tions. 

We consider curves and surfaces in a space S, taken for the 
sake of illustration to be R 4 (homogeneous coordinates 
x,y,z,w).  A parametr ic  object  in S is a function f :X-~S 
where X is a set constituting the parameter  space. The  
object is a curve, segment,  surface, or patch when x is 
respectively the set R of reals, the real interval [0,1], the real 
plane R 2, or the unit square [0,1] 2. We take s and t for the 
parameters, making f either f (t) or f (s ,t ). 

A linear substitution transforms f (t) into f (at+b) and f (s,t) 
into f(as+b,et+d), expressible as the composition o f f  with a 
linear or bilinear function respectively. The geometric effect 
of linear substitution is to translate and scale a segment or 
patch within the curve or surface containing it. Any segment 
of a curve can be mapped to any other segment of the same 
curve by some linear substitution, and likewise for patches. 

Let us denote by L the linear substitution t/2 and by R the 
linear substitution (t+l)r2. Then L and R act on a segment C 
to yield the " le f t "  and "r ight"  halves LC and RC of C. 
These are the transformations associated with recursive sub- 
division; they may be applied recursively to subdivide a 
curve segment into quarters LLC,LRC,RLC,RRC (Figure l(a)), 
eighths, etc. 

Let us denote by E the linear substitution t+l. Then E acts 
on a segment C to yield its "right neighbor" EC. One use 
for E is as the forward difference operator. To render a long 
segment C, start with a very small initial segment D of C 
(e.g. D=LL.--LC) and generate the remaining (also small) 
segments of C by El) ,EED ,EEED, •. •. This process is usually 
called forward differencing. 

Another use for E is as a substitute for R in recursive subdi- 
vision: we may represent R as EL, as illustrated by the top 
half of Figure l(b). However, rather than computing LC and 
RC separately we can compute LC once and then apply E to 
LC to get the right ha l l  allowing us to discard C after apply- 
ing L to it and so avoiding a "stack pop" when the time 
comes to apply R. The lower half of Figure l(h) shows that 
this can be extended down another layer of recursion: we can 
get to RLC, LRC, and RRC by starting from LLC and repeat- 
edly applying E, thanks to the additional identity ER = LE 
(i.e. EEL = LE) which allows E to make the jump from RLC to 
LRC. This ability of E to run across the whole tree holds at 
any depth. At sufficient depth the method turns into ordinary 
forward differencing as per the previous paragraph. 

A disadvantage of forward differencing is that it may not 
traverse C with uniform velocity. Recursive subdivision 

C 

LC 

LLC RLC 

RC 

LRC RRC 
(a) 

LC ~- RC 

(b) 

LRC ~ RRC 

Figure 1. Relationship of linear substitutions L, R, and E. 

avoids this difficulty by stopping at different depths in dif- 
ferent parts of the reeursion tree. We may transfer this 
advantage of recursive subdivision to forward differencing 
by inserting an occasional L or L -~ (the substitution 2t) into 
the stream of E 's  whenever the velocity is too great or too 
small respectively. This has the effect of changing our level 
in the recursion tree as we forward-difference across it. We 
call this technique adaptive f o r w a r d  differencing. 

In order to implement the above we require concrete 
representations for C, L, E, etc. We do this in the usual way: 
independently for each dimension of s take C to be a poly- 
nomial in t (and s), regard the polynomial as a point in a 
vector space of dimension one more than its degree, regard 
linear substitutions as a particular kind of linear transforma- 
tion of this space, and perform the transformations in an 
appropriate basis for the space. One key property of linear 
substitution is that it does not increase polynomial degree, 
the other is that its action on a polynomial viewed as a vector 
is indeed that of a linear transformation. 

While any basis will do, certain bases favor certain transfor- 
mations. For example the total number of l ' s  in the binary 
representation of a particular transformation may be quite 
small in a particular basis, permitting the transformation to 
be carried out with just a few shifts and adds. Catmull [2] 
gives a basis for which L and R can be cheaply computed 
with only three adds and four shifts. 

1 o o, 8 ] Lc = 0 1/4 0 00 
1/2-1/8 1/2 
0 1/8 0 

[i 71 1/2-1/8 1/2 
Rc = 1/8 0 1 

0 1 
0 0 l/4J 
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Figure 2. Block diagram of an AFD unit. 
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However, for forward differencing neither Catmull 's  basis 
for L and R nor any of the other bases usually considered for 
recursive subdivision are particularly well suited to the 
matrix representation of  E. The best basis for E is the for- 
ward difference basis which allows parallel additions suit- 
able for a pipeline implementation. 

Adaptive F o r w a r d  Difference Algorithm 
For adaptive forward differencing we require a basis that 
works well with L and L -~, especially with E, on the ground 
that E occurs significantly more often than L in practice. 
The following set is the forward difference basis which is 
considered to be the most appropriate. 

B3 : l (t3-3t2+2t) = 6 t ( t - 1 ) ( t - 2 )  

1 2 t 1 B 2 = ~ ( t  - ) = ' ~ - t ( t - l )  

B l = t  

B 0 = I  

The E matrix of this basis requires only three adds which can 
be done in parallel. 

Ii °ll E= 

The L and L < matrices can be implemented with simple 
shifts and adds. 

Ii00o   /i001104 L = 1/2-1/8 1 L- l= 
0 1/4 -u81 
o 0 t / sJ  o o 

This algorithm is implemented in hardware called an AFD 
unit. An AFD unit is a third order digital differential 
analyzer which implements an adaptive forward difference 
solution to a parametric cubic function of t. The parameter t 
varies from 0 to 1 along the curve. The dt step size for t is 
adaptively adjusted so that the curve steps along in approxi- 
mately one pixel steps in screen coordinates. Figure 2 shows 
a block diagram of  an AFD unit. t 

t Sun Microsystems, Inc. is pursuing patent protection in 
the United States and abroad on the technology described in 
this paper. 

Four AFDUs can be used to generate the x,y,z,w values of 
the pixels along a cubic curve. Figure 3 shows the 4 
required AFDUs and the divide by w circuit necessary for 
rendering rational curves. The filter unit is the controller for 
the adaptive step size, and performs other functions. 

X AFDU 

Y AVOU I 

Z AFDU I 

I con o, 

Pixel 

Filter 

x / ~  
r 

y/w To 
- Frame 

Buffer z /w 

Arc length 

Figure 3. Block diagram of  the AFD hardware. Each AFDU 
computes a 3rd order parametric function. 

1. R e p a r a m e t e r i z a t i o n  

A parametric cubic function f(t) can be represented in for- 
ward difference basis as 

f = aB 3(t)+bB 20)+cB ~(t )+dB o(t) 

A cubic curve is defined by four cubic functions x(t), y(t), 
z(t), and w(t), each implemented by a separate AFD unit. 

x ( t )  = axBB+b:,B2+cxB l+d,B o 

y (t ) = ayB3+byB2+cyB l+dyB o 

z (t)  = a, B 3+b~ B 2+c, B l+d, B o 

w (t) = aw B 3+b,, B 2+cw B i+d~B 0 

The coefficients a, b, c, and d are loaded into the 4 
coefficient registers of  each AFD unit. At each clock event 
the parameter t increases by dt and the four AFDUs generate 
the coordinates of  one pixel. 

If the x,y address step, corresponding to the dt step, is more 
than one pixel, dt is divided by two (adjusted down) so that 
each clock generates approximately one pixel along the 
curve. If  the x,y address step is less than 112 pixel then dt is 
doubled (adjusted up) to increase the change in x,y coordi- 
nates. 
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To reduce dt by half, we transform the cubic functions x(t), 
y(t), z(t), w(t) by applying the L matrix: 

x ' ( t ) = x ( 2  )= ' " " " a ~ 8 3 + b  xB2+c z B l + d  xBo 

y'(t  ) = y ( 2  ) = a'~B3+b'~n 2+c" fl~ ~+a'yB o 

z ' ( t ) = 2 ( 2 )  

w ' ( t )=w( -~ )  

The coefficients of  the two sets of  cubic functions are related 
by 

1 

1 1 t," = ~ -b  ~ a  

1 1 .  1 
c p = --~c-gO+--~a 

d ' = d  

TO double dt, we transform the cubic functions by applying 
the L -1 matrix: 

x'( t)  =x(2t)  

y ' ( t )= y(2t)  

z'(t ) = z (2t) 

w "(t ) = w (2t) 

Here the coefficient transformation is 

a" = 8a 

b" --- 4b +4a 

c" = 2c +b 

aV = d  

If  the step size is correct then we apply the E matrix. 

x'( t)  =x( t+l )  

y'(t ) = y (t+l) 

Z'(t) = Z ( t+ l )  

w'(t) = w ( t + l )  

The AFD units in this case generate a new pixel and advance 
to the next pixel with the corresponding coefficients 
transformed by 

a" =a  

b" = b+a 

C t ~ C +b 

d"  = d+c 

The adaptive forward differencing mechanism is illustrated 
below. 

t=0 

adjusted up /  ~ _ . 

Figure 4 Operations of  "adjust up", "adjust down", and "for- 
ward step". 

We have measured the percentage of  steps requiring an 
adjust up or adjust down using the Utah teapot at various 
scale factors. Drawing the cubic curves comprising a wire 
mesh on the blcubic patches making up the surface involved 
73,000 forward steps, and 600 adjustment steps. The over- 
head for the adaptive nature of the forward difference 
scheme is therefore quite small. It increases when the curves 
being drawn have large accelerations. 

2. I n i t i a l  S e t u p  

To render a cubic curve C we first convert to the forward 
difference basis. We then start with a small initial segment 
D of  the curve by applying Ln=L.L ...... .L to the curve C. The 
initial scale down is not really required. However,  if not 
done, the adaptive mechanism may adjust down many times 
until the pixel step size is approximately one pixel before it 
starts rendering. In practice the parameterization is scaled 
down before loading into the AFD units to be within the 
hardware register precision. The AFDUs adjust from there. 

3 .  P i x e l  f i l t e r i n g  

The pixel filter performs five functions. 1) It compares the 
current pixel coordinates with the previous pixel coordinates 
generated by the AFD units and tells the AFD units whether 
they should adjust up, adjust down, or step forward to the 
next pixet. 2) The pixel filter also detects and replaces 
"elbow" sequences of  the form x,y to x ,y+l  to x + l , y + l  with 
a diagonal move x,y to x + l , y + l .  This is done to improve the 
appearance of  generated curves. 3) It also generates arc 
length along the curve generated by the AFD units. It adds 1 
to the are length if  the curve steps either horizontally or vert- 
ically and adds 1.414 if  the curve steps diagonally. The out- 
put arc length is used to address the pattern memory for 
mapping texture along curves. 4) The filter unit performs 
clipping on t, x, y, and z. t is cl ipped between a tmin register 
and a tmax register to assist in rendering trimmed patches. 
x, y, and z are clipped to their respective rnin and max regis- 
ter values. 5) The filter generates the instantaneous tangent 
and normal vectors for the purpose of  anti-aliasing curves. 

The pixel filter thus acts as the controller for the AFD units 
and also computes arc length, and antialias weights. 

114 



~ Compute r  Graph ics ,  Vo lume 21, Numbe r  4, Ju ly  1987 

4. Render ing  conics and rat ional  cubi ts  

One of the AFI) units generates the homogeneous coordinate 
w as a parametric cubic function of t. For rational cubic 
curves x, y, and z must be divided by w at each point. This 
is accomplished by using a reciprocal unit which computes a 
truncated Taylor series approximation of 1/w. 

The reciprocal 1/w is computed as follows which can be 
easily implemented with look-up tables, adders and muff- 
pliers. 

1 1 8 
W W 0 W0 2 

The following example shows how to set up AFDUs to draw 
an ellipse with radius r~, ry centered at <x0, y0 > and rotated 
by an angle 0. A half ellipse with radius rx, ry can be defined 
in parametric form as 

t ( l - t )  
X l ( t ) = r x  t2._t+0.5 

0.5-t 
y l ( t )  = ry tz_t+0.5 

We can get the other half of the ellipse by mirroring the 
image. By rotating the ellipse by an angle 0 and then 
translating it to <x0, yo>, we get a set of cubic functions 
which describe an ellipse with radius r,, ry centered at xo, Yo 
and rotated by an angle 0: 

x (t)  = r ,  t ( l - t ) cos0+ry  (0.5-t)sin0+x o(t 2-t +0.5) 

= ( X o - r  ~ eosO)t  z + (r~ cosO-r:~ sinO--Xo)t 

+ 0.5(ry sin0+xo) 

y (t) = -r~ t (1-t)sinO+ry (0.5-t)cos0+yo(t L-t +0.5) 

= (yo+rzsin0)t 2 - (r~sinO+rycosO+yo)t 

+ 0.5 (ry cos0+y 0) 

w (t ) = t2--t +0.5 

By converting the above cubic functions to DDA basis, we 
get a set of coefficients 

a~ = O 

b= = 2(Xo-r~cosO ) 

cx = (x0-rzcos0) + (rzcosO--rysinO-Xo) 

d, = 0.5(ry sin0+x0) 

% = 0  

t,, = 2(y0+~, sin0) 

cy = (y 0+rz sin0) - (r x sinO+rycosO+yo) 

dy = 0.5(ry cos0+Y0) 

aw = 0.0 

t~, = 2.0 

c w = 0.0 

d~ =0.5 

We can set up the AFD units with the above coefficients for 
drawing the ellipse (see Figure 6). 

5. Anti-al iasing cubic curves 

AFD gives a simple means of generating the instantaneous 
tangent vector ¢t,  ty, along the curve by simply subtracting 
the last point from the previous one. The instantaneous 
tangent vector gives an indication of whether the current 
pixel is in an x_major (t~>ty) or y_major (tz¢ty) slope. An 
approximate distance of the current pixel away from the 
center curve is computed from this tangent and the fractional 
portion of the pixel addresses as follows. Here c( is the ratio 
of variation of intensity, and c( is used to blend the curve 
color and the background color. This is a rather crude 
approximation but gives surprisingly improved curve 
appearance. Figure 5 shows the result of this curve anti- 
aliasing method drawn with the software simulation. 

If the tangent vector indicates x_major, we compute 

(f,-0.5) + ct = t~ (f'-0"5) 

where <t~, ty > is the tangent and f~ and fy axe the fractional 
portion of the pixel x and y address. If cc is positive, then the 
intensity of pixel <x,y> is blended by (l.0-c0, and pixel 
<x,y+l> by c~. In case of a negative c~, pixel <x,y> is 
blended by (l.0+c0, and pixel <x,y-1 > by -c~. For y_major, c~ 
is 

t~ 
a =  C/ , -o .5)  + Z - ~ : , - 0 . 5 )  

In this case, pixel <x,y> is blended by (1.0--c0, and pixel 
<x+l,y> by c~ if c~ is positive; otherwise pixel <x,y> by 
(1.0+cx) and pixel <x-l,y> by -c~. 

One advantage of this anti-aliasing scheme is that it applies 
as well to both nonrational and rational curves. Figure 6 
shows a set of anti-aliased rational curves rendered with this 
scheme. 

S h a d i n g  B i c u b i c  P a t c h e s  
The AFD technique can be used to render shaded, curved, 
trimmed patches, generate anti-aliased curves, and map tex- 
ture and imagery onto curves and surfaces as a function of 
either are-length or parameter. 

Shading and image mapping onto bicubic or rational bicubic 
surface patches is performed by drawing many curves very 
close to each other. Each curve is a cubic in t formed by set- 
t ings  at a constant s=s~. We therefore need to find the spac- 
ing 85 from one curve to the next so that no pixel gaps exist 
in between them. To compute the spacing 8a in between the 
current curve f ( s = s i , t  ) and the next curve, we run a series of 
testing curves in the orthogonal direction (i.e. s direction) at 
t =(0.0,0.125 ...... 1.0) and examine the step size used by those 
curves at the positions s=s i. T h e  minimum size used is then 
chosen as the spacing for the next curve f (s~+Ss,t). When the 
85 gets smaller, it indicates that the next curve should be 
filled in closer to the current one; when 85 increases, the next 
curve can be a little less close. 
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We explain next how AFD is used to adaptively adjust the 
spacing in between curves. For a bicubic patch F(s , t )  
represented in forward difference basis, 

F(s , t )  = < f x ( s , t ) , f  y ( s , t ) , f z ( s , t ) , f w ( s , t  ) > 

each $ (s ,t ) is a bicubic function of  s and t. For example the x 
component 

fx(s,t)=[Bo(t),Bl(t),B2(t),BB(t)] XloXHXI2XlB /B,<,)I 
~2o ~2~ x ~  x2 /B2(~)I 

LX3o x~1 x32 x3~j LB3(s)J 

where x~j are the x coordinates of  the control points of  the 
patch. A curve at a constant s ,  f (s=s~, t ) ,  is a cubic function 
represented in forward difference basis as 

f (s =si,t )=dB 0(t )+cB l(t )+bB z(t )+aB 3(t ) 

where the four coefficients a ,b ,c ,d  are cubic functions of  s in 
forward difference basis: 

d (s)=Xoo B 0(s )+x 01 B 1 (s)+x 02 B 2(s )+Xo3 B B(s ) 

c (s)=XloBo(s)+x 11 B l(S )+xi2 B2(s )+x13 B3(s ) 

b (s)=x20 B 0(s)+x 22 B ~(s)+x22 B 2(s)+x23 B 3(s) 

a (s )=x3o Bo(s )+x 31B l(s )+x 3z B2(s )+x33 B 3(s ) 

We apply AFD to these four cubic functions to generate the 
value of coefficients for the next curve. When the spacing 8s 
for the next curve is the same as the previous one, the E 
matrix is applied. If  the spacing for the next curve doubles, 
L -1 and then the E matrix are applied to double the spacing. 
If  the spacing halves, we apply L and then the E matrix to 
reduce it. We are still examining methods for minimizing 
this redundancy through subdivision and tuning of  the 
adjustment criterion. 

Figure 7 shows a Phong shaded Utah teapot rendered on a 
1152 x 900 screen with 80 patches using the AFD technique, 
for comparison with the equivalent polygon shaded version 
in Figure 8 containing 4060 triangles. 

Trimmed patches are rendered by scan converting the trim- 
ming region in s,t space using the 8s seanline width. (Here a 
scanline in s,t space is different from a scanline in the screen 
space.) This produces a "scanline" curve segment at each 
constant si bounded by one or more tmin, tmax pairs. These 
curve segments are rendered with clipping to the appropriate 
tmin and tmax. Figure 9 shows a shaded, image mapped, 
bicubic patch trimmed with a SUN logo. 

Discussion 
In rendering curves we set the threshhold of  adjustment to be 
0.5 and 1.0, i.e. we adjust up if  x and y step by less than .5 
pixel and we adjust down if  x or y step by greater than 1 
pixel. Using this threshhold we do not overpaint too many 
pixels, and neither do we leave gaps between pixels. Patches 
are rendered by filling many curves very close together. 
However,  using the 0.5 and 1.0 threshhold in rendering a 
patch we tend to get missing pixels in the patch. This prob- 
lem is solved by reducing the pixel adjustment threshold 
down to 0.35 and 0.7, instead of  by reducing the spacing in 
between adjacent curves. We are currently trying to estab- 
lish the optimal adjustment criterion for ensuring no pixel 
gaps. 

For performance comparison purposes, we used the follow- 
ing three schemes to render a wireframe mesh of  curves for a 
piece of  teapot handle on a 512 x 512 screen with ten curves 
in each direction: (1) ordinary forward differencing, (2) 
adaptive subdivision, and (3) adaptive forward differencing. 
In this test, the ordinary forward differencing technique took 
8192 forward steps, the adaptive subdivision technique took 
3887 subdivisions, and AFD took 49 adjust_up's,  36 
adjust_down's and 3910 forward steps. It is obvious that the 
ordinary forward differencing technique usually requires 
more forward steps than our technique because it uses the 
smallest step required for no gaps and cannot adjust to a 
longer step when appropriate. Each forward operation takes 
three adds, each adjust_up or adjust_down takes 3 adds and 
2 multiplies. The first scheme required a total of  24516 
adds. Our technique required 11900 adds and 255 multi- 
plies. The subdivision technique took a total of 11661 adds 
and 15548 multiplies, where a single subdivision requires 3 
adds and 4 multiplies. 

We used the adaptive subdivision technique and our patch 
rendering technique to compare the patch rendering perfor- 
mance on rendering a piece of teapot body and a piece of  
teapot handle on a 512 x 512 screen. The termination condi- 
tion we used in the subdivision technique was to constrain 
the minimum bounding box of  the control points of  a Bezier 
patch within 1.0 by 1.0. The subdivision technique on the 
teapot body required 86380 subdivisions to fill the entire 
patch. Since a subdivision takes 36 adds and 48 multiplies, it 
requires approximately 3 million adds and 4 million multi- 
plies. Our technique required 708 adjust up, 513 adjust 
down, and 218513 forward step operations. Thus AFD used 
approximately 0.66 million adds and 3700 multiplies. Our 
method has a curve set up overhead of 12 adds per curve - a 
total of  6000 adds in this test case, which is negligible. In 
the ease of  the teapot handle, it took 143379 subdivisions 
with adaptive subdivision, whereas the new method per- 
formed 537 adjust up, 727 adjust down, and 187386 forward 
step operations, i.e., 5.16 million adds and 6.88 million mul- 
tiplies against 0.56 million adds and 2528 multiplies. 

Clearly, both subdivision and AFD can be implemented with 
integer arithmetic given sufficient precision. In both 
methods the above multiplies can be performed using simple 
shifts. The shifts required for the L and L -~ matrices can be 
implemented with "wires" in hardware since all elements are 
integer powers of  2. A complete error analysis of  a fixed 
point integer implementation of  AFD is currently being con- 
ducted. 

The relatively poor performance of adaptive subdivision is 
due to the fact that a subdivision operation takes 
significantly more computation than a forward difference 
operation. This new method has the advantage of  producing 
picture quality equivalent to adaptive subdivision without 
the memory stack management overhead of  recursive subdi- 
vision and is thus more suitable for hardware implementa- 
tion. AFD also makes patch rendering performance com- 
petitive with polygon rendering. When doing image map- 
ping and patch trimming, our technique operates in s,t space 
but polygon methods operate in the screen seanline order, 
therefore, our method does not require a transformation from 
screen space to image coordinates as the polygon method 
does. 
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Figure 5. Comparison of antialiased and ordinary 
nonrational cubic curves rendered with adaptive for- 
ward difference scheme. 

Figure 6. Comparison of antialiased and ordinary con- 
ics rendered with adaptive forward difference scheme. 
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Figure 7. Adaptive forward difference rendering of the 
Utah teapot using 80 patches. 

Figure 8. Classical polygon rendering of the Utah 
teapot using 4060 triangles. 

Figure 9. An image_mapped bicubic patch trimmed 
with a SUN logo. 
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