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Abstract

Polar forms simplify the construction of polynomial and piecewise polynomial curves

and surfaces and lead to new surface representations and algorithms� This paper

provides an introduction to polar forms and shows how polar forms yield closed

form solutions to various recursive algorithms that are used in Computer Aided

Geometric Design� As a consequence� we obtain a simple new labeling scheme for

B�ezier and B�spline curves and surfaces that allows us to label control points in a
consistent and meaningful way� The presentation concludes with a survey of some

recent new results that were obtained using polar forms�

� Introduction

The main idea behind polar forms is best explained by a picture� Fig�� shows a cubic
B�ezier curve F over the unit interval ��� �� together with its B�ezier points and all the
intermediate points that come up during evaluation of the curve at a parameter t using
the de Casteljau Algorithm� New in this �gure is the labeling scheme� While most standard
texts use labels such as blj for the intermediate points of the de Casteljau Algorithm the
labels in Fig�� are of the form f	�� �� �
 where f is the polar form of the polynomial F � Since
F is of degree three� its polar form has three arguments� Furthermore� the polar form
is symmetric� i�e�� its three arguments can be written in any order without changing the
value of f � and f is related to F by the identity F 	u
 � f	u� u� u
� Finally� the incidence
structure of the points and lines in Fig�� is re
ected in the labels� All points whose
labels share at least two arguments lie on the same line� The exact position of a point
on this line is determined by the remaining third label� As t moves with constant speed
between � and �� the point f	�� t� �
� e�g�� moves with constant speed between f	�� �� �

and f	�� �� �
� The point f	�� t� �
 lies t of the way from f	�� �� �
 to f	�� �� �
� Moving
on a line with constant speed means that the polar form is a�ne in each argument� or
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simply multia�ne� Thus the polar form f of a cubic polynomial curve F is a symmetric
tria�ne map that satis�es F 	u
 � f	u� u� u
�

f��� �� �� � F ���

f��� �� t�

f��� �� 	� f��� t� 	� f��� 	� 	�

f�t� 	� 	�

F �	� � f�	� 	� 	�

f��� t� t�
f�t� t� 	�

F �t� � f�t� t� t�

Figure �� A cubic B�ezier curve and the de Casteljau Algorithm�

Note that the above properties allow to reconstruct the point F 	t
 from the B�ezier
points f	�� �� �
� f	�� �� �
� f	�� �� �
� and f	�� �� �
 as follows� First we interpolate lin�
early along the edges of the control polygon to obtain the points f	�� �� t
� f	�� t� �
�
and f	t� �� �
� Then we interpolate linearly between these points to obtain f	�� t� t
 and
f	t� t� �
� Finally� the last step of interpolation between these two points yields the point
F 	t
 � f	t� t� t
 on the curve� This is exactly the de Casteljau Algorithm�

� The polar form of a polynomial curve

We now wish to generalize our introductory discussion from cubics to polynomial curves
of arbitrary degree� In particular� we wish to establish the so�called Blossoming Principle

��� �� ��� ��� ��� which essentially states that every polynomial has a unique polar form�
We �rst need a little bit of notation� Recall that a map f � IR � IRt is a�ne if it

preserves a�ne combinations� i�e�� if f satis�es f	
P

j �juj
 �
P

j �jf	uj
 for all scalars
��� � � � � �m � IR with

P
j �j � �� A map f � IRn � IRt is n�a�ne 	or just multia�ne
 if it

is an a�ne map in each argument when the others are held �xed� Thus f is multia�ne if

f	u�� � � � �
X
j

�juij � � � � � un
 �
X
j

�jf	u�� � � � � uij � � � � � un


for all i � �� � � � � n and ��� � � � � �m � IR with
P

j �j � �� Finally� f � IRn � IRt is called
symmetric if it keeps its values under any permutation of its arguments�

It is possible to extend the domain of a symmetric multia�ne map f to vectors� Let
��i � wi � vi be a vector� We can then de�ne f	u�� � � � � un�q� ���� � � � � ��q
 recursively as

f	u�� � � � � un�q� ���� � � � � ��q
 �

f	u�� � � � � un�q� w�� ��� � � � � ��q
� f	u�� � � � � un�q� v�� ��� � � � � ��q
�
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Note that this de�nition is in fact well�de�ned� i�e�� only depends on the vectors ��i� not
on their starting nor end points wi and vi�

With this notation in place we are then able to state the following Blossoming Principle

���� ��� ����

Theorem ��� �Blossoming Principle� Polynomials F � IR� IRt of degree n and sym�

metric multia�ne maps f � 	IR
n � IRt are equivalent to each other� In particular� given

a map of either type� a unique map of the other type exists that satis�es the identity

F 	u
 � f	u� � � � � u
� In this situation f is called the multia�ne polar form or blossom of

F � while F is called the diagonal of f � Furthermore� the q�th derivative of F is given as

F �q�	u
 �
n�

	n� q
�
f	u� � � � � u� �z �

n�q

� ��� � � � � ��� �z �
q


� 	���


where �� � � � � � IR is the standard unit vector and f	u� � � � � u� ��� � � � � ��
 is de�ned as

above� �

Explicit formulas for the polar form f become particularly simple for monomials

F 	u
 �
nX

i��

aiu
i�

In this case the polar form f is given by the formula

f	u�� � � � � un
 �
nX

i��

ai

�
n

i

��� X
S�f������ng

jSj�i

Y
j�S

uj�

and the coe�cients ai satisfy

ai �
F �q�	�


q�
�

�
n

q

�
f	�� � � � � �� �z �

n�q

� ��� � � � � ��� �z �
q


�

For the cubic polynomial

F 	u
 � a� � a�u� a�u
� � a�u

�

we obtain� e�g��

f	u�� u�� u�
 � a� �
a�
�
	u� � u� � u�
 �

a�
�
	u�u� � u�u� � u�u�
 � a�u�u�u��

A coordinate�free formula for the polar form is ����

f	u�� � � � � un
 �
�

n�

X
S�f������ng

jSj�i

	��
n�iinF 	
�

i

X
j�S

uj
�

We conclude this section with a discussion of the continuity conditions between two
polynomials in terms of polar forms� Essentially by rephrasing 	���
 we obtain the fol�
lowing theorem�
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Theorem ��� �Cq�Conditions� Let F � IR � IRt and G � IR � IRt be two polynomials

of degree n� and let u � IR� Then the following two statements are equivalent�

� F and G are Cq�continuous at u�

� f	u� � � � � u� u�� � � � � uq
 � g	u� � � � � u� u�� � � � � uq
 for u�� � � � � uq � IR ��

� B�ezier curves

Why are polar forms useful� Let us consider a polynomial curve F � IR � IRt� Suppose
we wish to represent F as a B�ezier curve over some given interval � � �r� s�� What are
the B�ezier points� Writing u as an a�ne combination of r and s�

u �
s� u

s� r
r �

u� r

s� r
s�

we obtain

F 	u
 � f	u� � � � � u
 �
s� u

s� r
f	u� � � � � u� r
 �

u� r

s� r
f	u� � � � � u� s


�
�
s� u

s� r

��
f	u� � � � � u� r� r
 � �

�
u� r

s� r

��
s� u

s� r

�
f	u� � � � � u� r� s


�
�
u� r

s� r

��
f	u� � � � � u� s� s


�
nX

j��

B
��n
j 	u
 f	r� � � � � r� �z �

n�j

� s� � � � � s� �z �
j


�

where

B
��n
j 	u
 �

�
n

j

��
u� r

s� r

�j �s� u

s� r

�n�j

� j � �� � � � � n�

are the Bernstein polynomials w�r�t� � � �r� s�� Thus we have ��� �� ��� ����

Theorem ��� �B	ezier Points� Let � � �r� s� be an arbitrary interval� Every polyno�

mial F � IR� IRt can be represented as a B�ezier polynomial w�r�t� �� The B�ezier points

are given as

bj � f	r� � � � � r� �z �
n�j

� s� � � � � s� �z �
j


� 	���


where f is the polar form of F � �
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f�r� r� r� � F �r�

f�r� r� u�

f�r� r� s� f�r� u� s� f�r� s� s�

f�u� s� s�

F �s� � f�s� s� s�

f�r� u� u�
f�u� u� s�

F �u� � f�u� u� u�

Figure �� The de Casteljau Algorithm in the case n � �

Equation 	���
 immediately leads to an evaluation algorithm that recursively computes
the values

bl
j	u
 � f	r� � � � � r� �z �

n�l�j

� u� � � � � u� �z �
l

� s� � � � � s� �z �
j




�
s� u

s� r
f	r� � � � � r� �z �

n�l�j	�

� u� � � � � u� �z �
l��

� s� � � � � s� �z �
j


 �
u� r

s� r
f	r� � � � � r� �z �

n�l�j

� u� � � � � u� �z �
l��

� s� � � � � s� �z �
j	�




�
s� u

s� r
bl��
j 	u
 �

u� r

s� r
bl��
j	�	u
�

from the given control points� For l � n we �nally compute bn
� 	u
 � f	u� � � � � u
 � F 	u


which is the desired point on the curve� The resulting computational scheme is illustrated
by Fig�� and Fig��� This algorithm was �rst studied by Paul de Faget de Casteljau ��� ��
and is therefore called de Casteljau Algorithm�

Formula 	���
 also shows that the de Casteljau Algorithm o�ers much more than just
evaluation� Suppose that we wish to subdivide a B�ezier curve F over a given interval
� � �s� t� at an arbitrary parameter u � �� What are the new B�ezier points of the left
and right segments Fl and Fr with respect to the subintervals �l � �r� u� and �r � �u� s��
Equation 	���
 tells us that the new B�ezier points after subdivision are given as

bl
� � f	r� � � � � r
� bl

� � f	r� � � � � r� u
� � � � � bl
n � f	u� � � � � u


and

br
� � f	u� � � � � u
� br

� � f	u� � � � � u� s
� � � � � br
n � f	s� � � � � s
� 	���


Inspection shows that these points are automatically computed during the de Casteljau
Algorithm and are stored along the left and right diagonals�

Finally� a slight modi�cation of the de Casteljau Algorithm can be used to compute
arbitrary polar values f	u�� � � � � un
 by recursively computing the values
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f	r� r� u
 f	r� u� s
 f	u� s� s


f	r� u� u
 f	u� u� s


f	u� u� u


s�u

s�r
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s�u
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Figure �� The de Casteljau Algorithm for the case n � ��

bl
j	u�� � � � � ul
 � f	r� � � � � r� �z �

n�l�j

� u�� � � � � ul� �z �
l

� s� � � � � s� �z �
j




�
s� ul

s� r
f	r� � � � � r� �z �

n�l�j	�

� u�� � � � � ul��� �z �
l��

� s� � � � � s� �z �
j




�
ul � r

s� r
f	r� � � � � r� �z �

n�l�j

� u�� � � � � ul��� �z �
l��

� s� � � � � s� �z �
j	�




�
s� ul

s� r
bl��
j 	u�� � � � � ul��
 �

ul � r

s� r
bl��
j	�	u�� � � � � ul��
�

For l � n we �nally compute bn
� 	u�� � � � � un
 � f	u�� � � � � un
� This algorithm is called

multia�ne de Casteljau Algorithm�

�



How about derivatives� After writing �� � �
s�r
	s� r
� Formula 	���
 implies

F �	r
 �
n

s� r
	f	r� � � � � r� s
� f	r� � � � � r

 �

n

s� r
	b� � b�


and similarly

F ��	r
 �
n	n� �


	s� r
�
	b� � �b� � b�
� etc�

These are the well�known derivative formulas for B�ezier curves�
We conclude this section with a brief remark on a�ne invariance� Let �F � ��F be the

image of F under an a�ne map 	e�g�� translation� scaling� rotation
 �� The uniqueness
part of Theorem ��� implies that the polar form �f of �F is given as �f � ��f � and it follows
that the B�ezier points 
bj of �F satisfy


bj � �f	r� � � � � r� s� � � � � s
 � �	f	r� � � � � r� s� � � � � s

 � �	bj
�

This means that the relationship between the curve F and its B�ezier control polygon is
invariant under a�ne maps�

� B�Spline Curves

How can we extend the results of the preceding section from B�ezier curves to B�splines�
We have seen that a polynomial curve F and its polar form f is completely de�ned by its
B�ezier points bj � f	r� � � � � r� s� � � � � s
� Let

rn � � � � � r� � s� � � � � � sn

be a non�decreasing sequence of real numbers� We wish to show that F can equally well
be de�ned by its de Boor points dj � f	r�� � � � � rn�j� s�� � � � � sj
� Since ri 	� sj� we can
express u as an a�ne combination w�r�t� ri and sj�

u �
sj � u

sj � ri
ri �

u� ri

sj � ri
sj�

and by successively expanding

dl
j	u
 � f	r�� � � � � rn�l�j� u� � � � � u� s�� � � � � sj


�
sj	� � u

sj	� � rn�l�j	�
f	r�� � � � � rn�l�j	�� u� � � � � u� s�� � � � � sj


�
u� rn�l�j	�

sj	� � rn�l�j	�
f	r�� � � � � rn�l�j� u� � � � � u� s�� � � � � sj	�


�
sj	� � u

sj	� � rn�l�j	�
dl��
j 	u
 �

u� rn�l�j	�

sj	� � rn�l�j	�
dl��
j	�	u


�



f�r�� r�� r��

f�r�� r�� u�

f�r�� r�� s��
f�r�� u� s�� f�r�� s�� s��

f�u� s�� s��

f�s�� s�� s��

f�r�� u� u�
� f�u� u� s��

F �u� � f�u� u� u�

F �r��
F �s��

Figure �� The de Boor Algorithm for the case n � ��

we see that F 	u
 � dn
� 	u
 is in fact completely determined by the points dj � f	r�� � � � � sj
�

Conversely� suppose that the points dj � f	r�� � � � � rn�j� s�� � � � � sj
 are given� We can
then use the above recurrence to evaluate the curve F at an arbitrary parameter value
u� Inspection shows that the resulting algorithm is identical to the de Boor Algorithm

for the evaluation of a B�spline segment from its end points� We thus have the following
���� ��� ����

Theorem ��� �de Boor points� Every polynomial F � IR � IRt can be represented as

B�spline segment over a non�decreasing knot sequence rn � � � � � r� � s� � � � � � sn� The

de Boor points are given as

dj � f	r�� � � � � rn�j� s�� � � � � sj
� 	���


where f is the polar form of F � �

Theorem ��� and the de Boor Algorithm are illustrated by Fig�� and Fig��� Again�
the multia�ne version of the algorithm can be used to compute arbitrary polar values
f	u�� � � � � un
 from the given control points�

Even more important than evaluation is knot insertion� Suppose that the knot se�
quence rn � � � � � r� � s� � � � � � sn is given and that we wish to insert a new knot
t with r� � t � s�� Equation 	���
 tells us that the new control points d�

j after knot
insertion are given as

d�
j � f	t� r�� � � � � rn�j��� s�� � � � � sj


�
sj	� � t

sj	� � rn�j

f	r�� � � � � rn�j� s�� � � � � sj


�
t� rn�j

sj	� � rn�j

f	r�� � � � � rn�j��� s�� � � � � sj	�


�
sj	� � t

sj	� � rn�j

dj �
t� rn�j

sj	� � rn�j

dj	��

�
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Figure �� The de Boor Algorithm for a cubic B�spline segment�

This is exactly the Boehm Algorithm� Note that the Boehm Algorithm is identical to the
�rst step of the de Boor Algorithm� Other knot insertion algorithms� as� e�g�� the OSLO
Algorithm� have been studied in great detail in a sequence of papers by P�J� Barry and
R�N� Goldman ��� ��� A thorough treatment of this material can be found in ����

We conclude this section with a brief discussion of the miracle that B�spline curves
are Cn�q�continuous at a knot of multiplicity q� In order to keep our discussion as simple
as possible we only consider the case where ftigi is a sequence of simple knots� Let
Fi � �ti� ti	��� IRt and Fi	� � �ti	�� ti	��� IRt be two adjacent B�spline segments that join
at the knot ti	�� Since fi	ti�n	j	�� � � � � ti	j
 � fi	�	ti�n	j	�� � � � � ti	j
� for j � �� � � � � n�
successive expansion shows that

fi	ti	�� u� � � � � u
 � fi	�	ti	�� u� � � � � u
�

�



Then 	���
 implies that Fi and Fi	� are in fact C
n���continuous at ti	�� The overlapping

de Boor schemes of two adjacent cubic B�spline segments are shown in Fig���
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Figure �� Overlapping de Boor schemes for two adjacent cubic B�spline segments F �
�r� s�� IRt and G � �s� t�� IRt over the knot sequence � � � � p� q� r� s� t� x� y� � � �
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� Tensor product surfaces

By far the most popular surfaces in Computer Aided Geometric Design and computer
graphics are tensor product surfaces� Given a curve scheme F 	u
 �

Pn
i��Bi	u
bi� bi � IR

t�
the corresponding tensor product scheme is de�ned as

F 	u� v
 �
nX

i��

mX
j��

Bi	u
 Bj	v
 bij� bij � IR
t�

which can also be written as

F 	u� v
 �
nX

i��

Bi	u
 biv with biv � bi	v
 �
mX
j��

Bj	v
bij�

The last equation demonstrates that tensor product surfaces may be considered as curves
of curves� and thus explains that we �rst have to understand curves in order to understand
tensor product surfaces�

Let us now consider the polar form of a polynomial tensor product surface� Let

F � IR
 IR� IR � 	u� v
 �� F 	u� v


be a polynomial tensor product surface of degree n in u and of degree m in v� In order
to compute the corresponding polar form fTP of F we simply have to polarize both
independent variables u and v separately� The resulting map

fTP � IR
n 
 IRm � IRt � 	u�� � � � � un� v�� � � � � vm
 �� fTP 	u�� � � � � un� v�� � � � � vm


is then characterized by the following properties�

� Symmetry� fTP is symmetric in the variables ui and vj separately� i�e�� we get

fTP 	u�� � � � � un� v�� � � � � vm
 � fTP 	u����� � � � � u��n�� v����� � � � � v��m�


for all permutations � �  n and � �  m�

� Multia�ne Property� fTP is a�ne in each of the variables ui and vj separately�

� Diagonal Property� fTP 	u� � � � � u� v� � � � � v
 � F 	u� v
�

In generalization of the curve case� the B�ezier points bij of F in the representation
F 	u� v
 �

Pn
i��B

n
i 	u
B

m
j 	v
bij as a tensor product B�ezier surface over �p� q� 
 �r� s� are

given as
bij � fTP 	p� � � � � p� �z �

n�i

� q� � � � � q� �z �
i

� r� � � � � r� �z �
m�j

� s� � � � � s� �z �
j




while the de Boor points dij of F in the representation F 	u� v
 �
P

i

P
j N

n
i 	u
N

m
j 	v
dij as

segment of a tensor product B�spline surface over the knot vectors S � fsig and T � ftjg
are given as

dij � fTP 	si	�� � � � � si	n� tj	�� � � � � tj	m
�

Many algorithms that have been discussed in the previous sections can then be generalized
from B�ezier and B�spline curves to B�ezier and B�spline tensor product surfaces�

��



� The polar form of a polynomial surface

From now on we wish to discuss !true" surfaces� We start with the Blossoming Principle

which generalizes almost word�by�word from curves to surfaces�

Theorem ��� �Blossoming Principle� Polynomials F � IR� � IRt of degree n and

symmetric multia�ne maps f � 	IR�
n � IRt are equivalent to each other� In particular�

given a map of either type� a unique map of the other type exists that satis�es the identity

F 	u
 � f	u� � � � �u
� In this situation f is called the multia�ne polar form or blossom of

F � while F is called the diagonal of f � Furthermore� the q�th directional derivative of F

with respect to vectors ���� � � � � ��q � IR� is given as

D
����������q

F 	u
 �
n�

	n� q
�
f	u� � � � �u� ���� � � � � ��q
� 	���


where f	u� � � � �u� ���� � � � � ��q
 is de�ned as in Section �� �

Again� things are particularly simple for monomials� For the quadratic polynomial

F 	u
 � a�� � a�� u� a�� v ��a�� u
� � a�� uv � a�� v

�

we obtain� e�g��

f	u��u�
 � a�� �
a��
�
	u� � u�
 �

a��
�
	v� � v�
 � a�� u�u� �

a��
�
	u�v� � u�v�
 � a�� v�v�

The coordinate�free formula for the polar form becomes ����

f	u�� � � � �un
 �
�

n�

X
S�f������ng

jSj�i

	��
n�iinF 	
�

i

X
j�S

uj
�

and the continuity conditions translate into

Theorem ��� �Cq�Conditions� Let F � IR� � IRt and G � IR� � IRt be two polynomials

of degree n� and let u � IR�� Then the following two statements are equivalent�

� F and G are Cq�continuous at u�

� f	u� � � � �u�u�� � � � �uq
 � g	u� � � � �u�u�� � � � �uq
 for u�� � � � �uq � IR ��
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Figure �� A cubic B�ezier patch�

	 B�ezier triangles

The straightforward analogue to B�ezier curves are triangular B�ezier patches� Consider
a polynomial surface F � IR� � IRt� Suppose we wish to represent F as a triangular
B�ezier patch over some given domain triangle � � �	r� s� t
� Representing u � IR� in
barycentric coordinates w�r�t� ��

u � r	u
 r� s	u
 s� t	u
 t� r � s� t � ��

we obtain

F 	u
 � f	u� � � � �u


� r	u
 f	u� � � � �u� r
 � s	u
 f	u� � � � �u� s


� t	u
 f	u� � � � �u� t


�
X

i	j	k�n

B
��n
ijk 	u
 f	r� � � � � r� �z �

i

� s� � � � � s� �z �
j

� t� � � � � t� �z �
k
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Figure �� The de Casteljau Algorithm for a quadratic B�ezier patch�

where

B
��n
ijk 	u
 �

�
n

ijk

�
r	u
i s	u
j t	u
k

are the Bernstein polynomials w�r�t� � � �	r� s� t
� We have shown�

Theorem 
�� �B	ezier Points� Let � � �	r� s� t
 be an arbitrary triangle� Every poly�

nomial F � IR� � IRt can be represented as a B�ezier triangle w�r�t� �� The B�ezier points

are given as

bijk � f	r� � � � � r� �z �
i

� s� � � � � s� �z �
j

� t� � � � � t� �z �
k


� 	���


where f is the polar form of F � �

Similar to the curve case� Theorem ��� leads directly to the de Casteljau Algorithm
for evaluation� subdivision� and computation of the polar form� The resulting computa�
tional scheme is illustrated in Fig� �� The well�known derivative formulas and continuity
conditions for B�ezier triangles follow directly from 	���
 and 	���
� For �� � s� r� e�g�� we
obtain

D
��
F 	r
 � n 	f	r� � � � � r� s
� f	r� � � � � r� r
 � n 	bn������ � bn����
�

Finally� a�ne invariance also follows in exactly the same way as in the curve case�
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Figure �� The de Boor Algorithm for a quadratic B�patch�


 B�patches

In the previous section we have seen that a polar form f is uniquely de�ned by its values
f	r� � � � � r� s� � � � � s� t� � � � � t
 on the vertices of a triangle � � �	r� s� t
� This de�nition
can be generalized by assigning a family of � usually di�erent � knots to each vertex of
the triangle �� The resulting surface representation is called a B�patch ���� ����

We say that A � fr�� � � � � rn� s�� � � � � sn� t�� � � � � tng is a knot arrangement if all triangles
�ijk � �	ri� sj� tk
 are non�degenerate� In this situation we can represent u in barycentric
coordinates w�r�t� �	ri� sj� tk
�

u � rijk	u
 ri	� � sijk	u
 sj � tijk	u
 tk� rijk � sijk � tijk � ��

and by successively expanding

dl
ijk	u
 � f	r�� � � � � ri� s�� � � � � sj� t�� � � � � tk�u� � � � �u


� ri	��j	��k	�	u
 f	r�� � � � � ri	�� s�� � � � � sj� t�� � � � � tk�u� � � � �u


� si	��j	��k	�	u
 f	r�� � � � � ri� s�� � � � � sj	�� t�� � � � � tk�u� � � � �u


� ti	��j	��k	�	u
 f	r�� � � � � ri� s�� � � � � sj� t�� � � � � tk	��u� � � � �u
�

we see that F 	u
 � dn
���	u
 is in fact completely determined by the points dijk �

f	r�� � � � � tk
� We thus obtain�

��



Theorem ��� �B�patch control points� Let a knot arrangement A � fr�� � � � � tng be

given as above� Every polynomial F � IR� � IRt can be represented as a B�patch over A
with control points

dijk � f	r�� � � � � ri� s�� � � � � sj� t�� � � � � tk
 	���


where f is the polar form of F � �

Theorem ��� shows that B�patches are the analogue to B�spline curve segments for
surfaces� In particular� B�patches have a de Boor like evaluation algorithm that computes
a point F 	u
 on the surface from the given control points through successive linear in�
terpolation� Again� the multia�ne version of this algorithm can be used to compute an
arbitrary polar value f	u�� � � � �un
� The resulting computational scheme is illustrated by
Fig���

� A new multivariate B�spline scheme

By combining B�patches and simplex splines� a new multivariate B�spline scheme has
recently been developed in ���� The new surface scheme is based on blending functions
and control points� and allows to construct smooth piecewise polynomial surfaces over
arbitrary triangulations of the parameter plane� Due to the given space limitations it is
impossible to discuss the surface scheme in glory detail� Some of its main features are
summarized in the following theorem�

Theorem ��� �Multivariate B�splines� Let F 	u
 �
P

I N
I
ijk	u
c

I
ijk be a multivariate

B�spline surface� Then this surface has the following properties�

� Piecewise Polynomial� F 	u
 is a piecewise polynomial of degree n�

� Locality� Movement of a single control point cIijk only in	uences the surface on the

triangle �	I
 and on the triangles directly surrounding �	I
�

� Convex Hull Property� F 	u
 lies inside the convex hull of its control net�

� Smoothness� The surface F 	u
 is generically Cn���continuous everywhere�

� A�ne Invariance� The relationship between the surface F and its control net is

a�nely invariant� �

A �rst implementation has succeeded in demonstrating the practical feasibility of the
fundamental algorithms underlying the new surface scheme ��� ���� Quadratic and cubic
surfaces over arbitrary triangulations can be edited and manipulated in real�time�

��



Figure ��� Solving the polygonal hole problem using triangular B�splines� First� the
piecewise polynomial surface around the hole is represented as linear combination of
B�splines 	top
� This B�spline surface can then be extended to produce an overall Cn���
continuous �ll of the hole 	bottom
� Note that this method can achieve C��continuity
with piecewise quadratics� and C��continuity with piecewise cubics�

��



In order for a surface scheme to be useful in practice� one must be able to represent
as many surfaces as possible by the new scheme� The following theorem ���� is rather
remarkable�

Theorem ��� �Polynomial and piecewise polynomial representation� Any poly�

nomial or piecewise polynomial surface F can be represented by the new B�spline scheme�

In this situation the control points are obtained as

cIijk � fi	r
I
�� � � � � r

I
i � s

I
�� � � � � s

I
j � t

I
�� � � � � t

I
k
� 	���


where fI is the polar form of the restriction of F to the triangle �I � �

Among other applications� Theorem ��� allows to derive a solution to the polygonal
hole problem� see Figure ���

�� A few historical remarks

Polar forms are a classical mathematical tool for the study of polynomials� In the context
of Computer Graphics and Computer Aided Geometric Design they have �rst been con�
sidered by Paul de Faget de Casteljau at Citroen ��� �� and by Lyle Ramshaw ���� ��� ����
The focus of de Casteljau"s original work has been on B�ezier curves and triangular B�ezier
patches� and especially on the construction of quasi�interpolants ���� Ramshaw"s treat�
ment is much more algebraic and uses techniques such as homogenizing and tensoring�

More recently� the polar approach to splines has been expanded and applied by various
researchers� Seidel ���� applies polar forms directly to the B�spline blending functions and
gives a simple development of B�splines from scratch� He also discusses the relationship
between polar forms and knot insertion� Barry and Goldman ��� �� relate polar forms to
other B�spline approaches and use polar forms for a thorough discussion of knot insertion
for B�splines� Lee ���� and Strom ���� also contribute to this area� Seidel ���� uses the
geometry behind polar forms to extend polar forms to geometrically continuous spline
curves� Extensions of this geometric approach to surfaces are discussed by Schmeltz �����
DeRose implements polar forms as an abstract data type and uses them as the basis of a
software library ���� Among other things� he uses polar forms for curvature computations
and for composing polynomials�

Polar forms have also been helpful in the development of new surface schemes� Seidel
���� introduces a new surface representation� the B�patch� which may be considered the
analogue to a B�spline segment for surfaces� Dahmen� Micchelli� and Seidel ��� combine
B�patches with simplex splines and develop the surface scheme of the preceding section�
An implementation of this scheme is discussed in ��� ���� The scheme allows to model
smooth piecewise polynomial surfaces over arbitrary triangulations�

��



References

��� P�J� Barry and R�N� Goldman� Algorithms for progressive curves� extending B�spline
and blossoming techniques to the monomial� power� and newton dual bases� In R�N�
Goldman and T� Lyche� editors� Knot Insertion and Deletion Algorithms for B�Spline

Modeling� SIAM� �����

��� P�J� Barry� R�N� Goldman� L� Ramshaw� and H��P� Seidel� Blossoming� The New

Polar�Form Approach to Spline Curves and Surfaces� SIGGRAPH 
�� Course Notes


��� ACM SIGGRAPH� �����

��� W� Dahmen� C�A� Micchelli� and H��P� Seidel� Blossoming begets B�splines built
better by B�patches� Math� Comp�� �����#���� �����

��� P� de Casteljau� Outillages m�ethodes calcul� Technical report� Andre Citroen� Paris�
�����

��� P� de Casteljau� Formes �a P�oles� Hermes� Paris� �����

��� P� de Casteljau� Le Lissage� Hermes� Paris� �����

��� T� DeRose� R�N� Goldman� and M� Lounsbery� A tutorial introduction to blossoming�
In H� Hagen and D� Roller� editors� Geometric Modelling� Methods and Applications�
Springer Verlag� �����

��� P� Fong� Shape control for B�splines over arbitrary triangulations� Master"s thesis�
University of Waterloo� Waterloo� Canada� �����

��� R�N� Goldman� Blossoming and knot insertion algorithms for B�spline curves�
Computer�Aided Geom� Design� ����#��� �����

���� E�T�Y� Lee� A note on blossoming� Computer�Aided Geom� Design� �����#���� �����

���� L� Ramshaw� Blossoming� A connect�the�dots approach to splines� Technical report�
Digital Systems Research Center� Palo Alto� �����

���� L� Ramshaw� B�eziers and B�splines as multia�ne maps� In Theoretical Foundations

of Computer Graphics and CAD� pages ���#���� Springer� �����

���� L� Ramshaw� Blossoms are polar forms� Computer�Aided Geom� Design� �����#����
�����

���� A� Rockwood� A brief introduction to blossoming� In Curve and Surface Design�

From Geometry to Applications� SIGGRAPH
�� Course Notes 
��� pages ��#���
ACM SIGGRAPH� �����

���� G� Schmeltz� Variationsreduzierende Kurvendarstellungen und Kr�ummungskriterien

f�ur B�ezier	�achen� PhD thesis� TH Darmstadt� Germany� �����

��



���� H��P� Seidel� A new multia�ne approach to B�splines� Computer�Aided Geom� De�

sign� ����#��� �����

���� H��P� Seidel� Symmetric recursive algorithms for surfaces� B�patches and the de Boor
algorithm for polynomials over triangles� Constr� Approx�� �����#���� �����

���� H��P� Seidel� Polar forms and triangular B�Spline surfaces� In Euclidean Geometry

and Computers� World Scienti�c Publishing Co�� �����

���� H��P� Seidel� Representing piecewise polynomials as linear combinations of multivari�
ate B�splines� In T� Lyche and L� L� Schumaker� editors� Curves and Surfaces� pages
���#���� Academic Press� �����

���� H��P� Seidel� Polar forms for geometrically continuous spline curves of arbitrary
degree� ACM Trans� Graph�� ����#��� �����

���� K� Strom� Splines� Polynomials and Polar Forms� PhD thesis� University of Oslo�
Oslo� Norway� �����

��


