
Artistic Multiprojection Rendering
Maneesh Agrawala∗ Denis Zorin† Tamara Munzner∗

∗Stanford University †New York University

Abstract

In composing hand-drawn images of 3D scenes, artists often alter the projection for each object
in the scene independently, thereby generating multiprojection images. We present a tool for
creating such multiprojection images and animations, consisting of two parts: a multiprojection
rendering algorithm and an interactive interface for attaching local cameras to the scene geometry.
We describe a new set of techniques for resolving visibility between geometry rendered with
different local cameras. We also develop several camera constraints that are useful when initially
setting local camera parameters and when animating the scene. We demonstrate applications of
our methods for generating a variety of artistic effects in still images and in animations.

1 Introduction

In computer graphics we typically use a single linear projection – often a perspective projection –
to generate a realistic view of a scene. Linear projections achieve this realism at the cost of
imposing restrictions on the 2D shape of each object in the image and on the overall composition
of the picture. Artists have developed a variety of techniques for composing images of 3D scenes
that deviate from the standard perspective projection. One of the most common techniques is to
combine multiple projections in a single image.

Artists create such multiprojection images for several reasons, including: expressing a mood,
feeling or idea; improving the representation or comprehensibility of the scene; and visualizing
information about the spatial relationships and structure of the scene. Multiple projections could
similarly enhance computer-generated images and animations, but simple and efficient methods
for multiprojection rendering have not been available.

Today, the most common method for creating a multiprojection image requires a combina-
tion of 3D rendering and 2D image compositing. The process is a labor intensive cycle that
involves rendering multiple views of the scene, transferring the images into a compositing ap-
plication and then manually merging them into a single multiprojection image. Although some
research systems [12, 11] shortcut this cycle by combining rendering and compositing into a sin-
gle application, resolving visibility between the images remains a manual process. In this paper
we present interactive methods for creating multiprojection images and animations. The main
technical contributions of our work are new algorithms designed for:

Resolving Visibility: In the multiprojection setting there is no uniquely defined solution
to the visibility problem. However, in many cases the user wishes to maintain the visibility
ordering of amaster camera while using differentlocal cameras to introduce shape distortions
to individual objects. Based on this insight, we propose an algorithm that automatically resolves
visibility for most practical cases and allows user adjustments when the automatically computed
visibility is not satisfactory.

Constraining Cameras: We suggest a simple and intuitive set of camera constraints allow-
ing the user to choose appropriate projections for a variety of artistic effects. These constraints
are particularly effective when initially placing cameras and when animating the scene.

Interactive Rendering: We leverage multipass hardware rendering to achieve interactive
rendering rates. The user can immediately see how changing the parameters of any camera or
moving any object will affect the final image.

The remainder of this paper is organized as follows. In section 2, we describe artistic uses of

1

multiple projections. After presenting related work in section 3, we describe our multiprojection
rendering algorithm with an emphasis on resolving occlusion in section 4. In section 5, we
present a set of camera constraints that provide intuitive controls over the camera parameters.
Examples of images generated with our system appear in section 6. Finally, section 7 outlines
future directions and conclusions.

2 Artistic Uses of Multiple Projections

Using a single projection for an entire scene is restrictive. The ideal projection for one object may
not be the best projection for all objects in the scene. Artists have a long history of solving this
problem by creating multiprojection images, which generally serve some combination of three
functions:

• Artistic Expression – Multiple projections help the artist express a mood, feeling or idea.
• Representation – Multiple projections improve the representation or comprehensibility

of the scene.
• Visualization – Multiple projections communicate information about the structure of the

objects and spatial relationships in the scene.

In this section, we consider several specific examples of each function. In section 6, we
present several images and animations that are based on these examples and were created using
our multiprojection rendering tools.

2.1 Artistic Expression

Viewing Anomalies: In Giorgio de Chirico’sThe Mystery and Melancholy of a Street, figure
1(a), the buildings, the van and the ground plane all have different viewpoints. Willats [19]
suggests that the melancholy aura is created by the unusual arrangement of the objects which
results in an incongruous spatial system. Despite the large disparities between projections, the
overall impression of a three-dimensional space remains intact.

Cézanne similarly incorporates multiple viewpoints inStill Life with Fruit Basket, figure 1(b).
Loran [13] describes how these viewing distortions generate tension between different planes in
the image; the distortions flatten some regions of the picture, while enhancing depth in other
regions. He explains that the inconsistencies in projection generate an “emotional nonrealistic
illusion of space.”

Foreground Elements in Animation: In cel-based animations, moving foreground ele-
ments sometimes translate across the image with little to no change in parallax (like cutouts or
sprites). Equivalently, as the element translates in the scene, its local camera moves with it,
thereby maintaining an identical view of the element from frame to frame. Meanwhile, the back-
ground is rendered using its own separate projection. Although fixing the view of foreground
elements is done primarily to reuse the same drawing from frame to frame, it has become a
stylistic convention in hand-drawn animation since the foreground elements appear flatter and
more “cartoony.”

In contrast to the flattened foreground elements, animators often exaggerate the perspective
projection of the background to create a deeper, more dynamic environment. However, such a
strong perspective could introduce distortions in the foreground of the image. A fixed view of the
foreground objects alleviates this problem.

2.2 Representation

Best Views: Certain viewpoints are better than others for comprehending the overall geomet-
ric shape of an object. By using multiple viewpoints the artists can present the best views of
all objects in the scene. Graham [5] points out that a single viewpoint is often inadequate for
large format pictures like murals, frescoes, or billboards. Such images are often placed above
standard eye-level and are seen from a much wider range of viewpoints than smaller format pic-
tures. For these reasons, many large format images are created with multiple projections. As

2

the van, and the ground plane. An exaggerated perspective projection elongates the white building and the
ground plane is placed so that the horizon is high up in the image to create the long receding path.
(b) Cezanne incorporates many viewpoints into this still life, of which four are shown in the diagram.
Notice how viewpoint A is much higher than the other viewpoints, thus the ginger jar and basket appear to
be tipped forward. Differences in viewpoint also cause the table to appear to split under the table cloth.
(c) The projection for the base differs from the projection for the horse and rider. In its original setting
viewers stood below and to the left of the fresco, so the entire picture was first created for this viewpoint.
While the low−set viewpoint was effective for the base, Uccelo found that it exposed too much of the
horse’s belly and distorted the rider. He repainted the top of the picture and raised the viewpoint of the
horse and rider to eliminate the distortion.
(d) The foreground humans would appear distorted if rendered using the projection of the background
architecture. Thus, Raphael altered the projections for the humans to give each one a more central
projection. Without the correction, the sphere (inset) would appear elliptical rather than circular[10, 21].
(e) Multiple parallel projections can produce an artificial sense of perspective by pointing the receding
parallels towards a central vanishing point. Dubery and Willats[2] argue that this technique works better
with oblique projections than with axonometric projections. Each building in the illustration of 53rd Street
is projected using a different oblique projection. Note how the receding parallels differ for the buildings at
the left, right, top, and bottom of the image.

Fig. 1. Multiprojection examples (clockwise labeling)
(a) A different projection is used for each major structure.
Note the difference in vanishing points for the buildings,

A

B

C

D

(a) Giorgio de Chirico’s The Mystery and
Melancholy of a Street

(b) Cezanne’s Still Life with
Fruit Basket (Diagram from [13])

(c) Paolo Uccelo’s Sir John
Hawkwood

(e) Artificial Perspective via Multiple Parallel
Projections (Chairs from [2], 53rd Street from [6])

(d) Raphael’s School of Athens

Oblique

Axonometric

large wall-sized displays become more prevalent [8, 16], we expect that multiprojection render-
ing techniques will be required to reduce perceptual distortions in images generated for such
displays. Paolo Uccelo’s fresco of Sir John Hawkwood is a well-known large format multipro-
jection example. He used two projections, one for the base and one for the horse and rider, to
produce the best view of both elements, as described in figure 1(c).

Reducing Wide-Angle Distortion: A well known problem with wide-angle, perspective
projections is that curved objects located near the edges of the viewing frustum, close to the image
plane, can appear unnaturally stretched and distorted. The most common technique for decreasing

3

this distortion is to alter the projection for every object to provide a perceptually “correct” view of
each one. The deviations in projection are often subtle and in many cases even the artist, focused
on producing a comprehensible image of the scene, may not realize he altered the projections.
Kubovy [10] shows that the foreground human figures in Raphael’s School of Athens, figure 1(d),
are inconsistent with the strong central perspective projection of the background architecture. The
inconsistencies improve the comprehensibility of the figures and make them easier to recognize.

2.3 Visualization

Artificial Perspective via Multiple Parallel Projections: It is possible to create an artificial
sense of perspective using multiple axonometric or multiple oblique projections. The “ trick”
is to orient the receding parallels of each object towards some pre-chosen vanishing point. In
the illustration of 53rd Street [6] (figure 1(e)) the buildings are drawn from above in oblique
projection. The receding parallels for each building point towards a central vanishing point,
thereby creating the illusion of perspective.

An advantage of such artificial perspective over true perspective projection is that objects do
not diminish in size as they recede from the viewer. With oblique projections, one face of each
object retains its true shape, allowing the viewer to perform some size and area comparisons.
Applying this principle to the 53rd Street example, it is possible to visually compare the 2D area
covered by each building. The convergence of true perspective would cause displayed rooftop
areas to depend on building height, making such comparisons more difficult.

3 Related Work

In computer graphics, alternatives to standard linear projections have been developed in a variety
of contexts. Max [14] shows how to project images onto a curved Omnimax screen, while Dorsey
et al. [1] present methods for projecting images onto planar screens for off-axis viewing. Zorin
and Barr [21] show how to correct perceptual distortions in photographs by reprojecting them.
Glaeser and Gröller [3] use cartographic projection techniques to reduce wide-angle distortions
in synthetic images. Both Wood et al. [20] and Rademacher and Bishop [15] describe techniques
for smoothly integrating all the views for a given camera path into a single image.

Savranksy et al. [17] describe methods for rendering Escher-like “ impossible” scenes. They
treat geometric transformations between pairs of objects as constraints on the viewing projec-
tion and then solve for a single projection that best meets all the constraints. They compute
orthographic viewing projections for several “ impossible” scenes. It is unclear how well such
an approach would extend to perspective projection. They show that the only way to obtain a
single projection for Escher-like scenes is by relaxing the constraints, so they remain valid in the
2D image but not necessarily in 3D object space. In fact, many of the “ impossible” scenes only
appear impossible from a single viewpoint and animated camera paths would destroy the illusion.

Several systems have been developed to allow more general alternatives to planar-geometric
projection. Inakage [9] derives mathematical formulations for three alternatives: curvilinear pro-
jection, inverted projection and arbitrary 3D warps. However, he does not consider combining
multiple projections within a single image. Löffelmann and Gröller [12] explore the use of curvi-
linear and non-linear projections to create Escher-like images. Levene [11] investigates artistic
uses of curvilinear, inverted, and oblique projections as alternatives to planar perspective. He de-
rives a mathematical framework that unifies several classes of projections. The last two systems
are notable because they contain mechanisms for specifying multiple projections within a single
image. However, to our knowledge, no system adequately addresses the problem of resolving
visibility in the multiprojection setting.

We will show in section 4.1 that resolving visibility is perhaps the most difficult problem in
generating multiprojection images because visibility ordering between objects is different under
each projection. Our solution is to use a master camera to specify visibility ordering while main-
taining shape distortions due to local cameras attached to each object. Although Levene uses the
concept of a master camera to compose his multiprojection images, he points out that visibility is

4

not properly resolved with his approach and leaves this as an open problem for future work.
The previous multiprojection rendering systems require the user to directly manipulate the

parameters of their generalized projections. Such controls are not always natural and their effect
on the final image may be unintuitive. In contrast, we provide several novel camera constraints
that allow the user to obtain commonly desired effects with relative ease. Users can also directly
specify projection parameters when necessary.

Creating a multiprojection image is far easier with interactive rendering so that the user can
immediately see how changing a projection effects the final image. Earlier systems [12, 11]
use software ray tracing renderers; therefore, image updates are not interactive for typical im-
age sizes. Our system maintains interactive rendering rates by leveraging graphics hardware.
Although this restricts our current implementation to linear planar-projections, our visibility or-
dering algorithms would work with any invertible projection, including the generalized projection
formulations proposed by Inakage, Löffelmann and Gröller, or Levene.

4 Multiprojection Rendering

Our multiprojection rendering algorithm includes three computational stages. The input to the al-
gorithm is a set of camera groups, each associating a collection of geometric objects with one lo-
cal camera. The user must provide a master camera and can optionally specify

Master
Camera

Image Layers

Occlusion
Constraints

Multiprojection Image

Render Image LayersUser−Specified
Occlusion

Constraints

Composite

Occlusion
Constraint
Detection

Set of Camera Groups

object-level occlusion constraints, both of
which are used to resolve visibility. In the
block diagram, white boxes represent com-
putational stages of the algorithm, while
gray boxes represent user-specified data.
The first stage of the algorithm renders each
camera group into a separate image layer.
We then merge the image layers together to
form the multiprojection image.

The main difficulty in the compositing
stage is the absence of a natural visibility

ordering. When visibility ordering differs from camera to camera, there is no unique way to re-
solve occlusion. Our key observation is that in most multiprojection images, all the local cameras
are relatively similar to one another and therefore generate similar visibility orderings. Instead of
specifying the occlusion relationship between every pair of objects in the scene, the user simply
specifies a master camera (often a local camera doubles as the master). We then use the mas-
ter camera to resolve visibility through a combination of two automatic techniques: 3D depth-
based compositing and standard 2D compositing based on object-level occlusion constraints. If
necessary, the user can directly modify the visibility ordering by specifying additional pairwise
occlusion relationships between image layers.

4.1 Visibility Ordering

With a single linear projection, visibility is defined unambiguously; the fibres, that is, the set of
points in 3D space that map to a point on the image surface, are straight lines. For any two points
that lie on the same fibre, occlusion is resolved by displaying the

A

B

C

point closest to the center of projection. This approach can resolve oc-
clusion whenever the fibres are continuous curves. With multiprojection
images, the fibres generally have a more complicated structure since the
mapping from 3D space to the image surface can be discontinuous. Sup-
pose, as in the diagram, that points A, B and C project to the same pixel
in their local images. The fibre of the multiprojection image at this pixel
consists of the union of the three dotted lines. It is difficult to automati-

cally compute a visibility ordering with complicated fibres because no natural ordering exists for
the points on different lines.

5

(a) Single projection master
camera view

(b) Multiprojection with
depth compositing only

(c) Multiprojection with occlusion
constraints and depth compositing

Fig. 2. To reduce the distortion of the column in the single projection image (a) we alter its projection as
shown in figure 5(c). In the multiprojection image, the point on the column (triangle) and the point on the
floor (circle) coincide. With depth-based compositing alone (b) the floor point “ incorrectly” occludes the
column point since it is closer to the master camera. However, the column occludes the floor in the master
view. Applying this object-level occlusion constraint during compositing yields the desired image (c).

It may be tempting to resolve visibility for the multiprojection image by directly comparing
local depth values stored with each image layer. The rendering algorithm would then be quite
simple: we could add the local camera projection to the modeling transformation matrix for each
object and render the scene using a standard z-buffer pipeline without resorting to layer based
compositing. However, this approach would lead to objectionable occlusion artifacts. Suppose
our scene consists of a vase sitting on a table. If we simply add the vase’s local camera projection
into its modeling transform, in most cases the vase will intersect the table. Our algorithm handles
these situations more gracefully by using the master camera to impose visibility ordering while
employing local cameras to provide shape distortion. In our example, the master camera would
be the original projection, in which the vase and table do not intersect, and the local projection
would affect only the shape of the vase without affecting visibility.

Given the master camera, we can define an ordering for any set of points in 3D space based on
the distance from each point to the master camera viewpoint. To merge the image layers rendered
for each camera group, we transform all the pixels in each image-layer into world space using
their pixel coordinates and z-values. We then apply the master camera projection to these world
space points and use a standard z-buffer test to determine the frontmost point at each pixel of
the master camera image. However, figure 2 shows that the results produced by this depth-based
approach are not always satisfactory. The problem occurs because visibility is resolved for each
pixel independently, yet we want to preserve object-level occlusion constraints, such as “column
occludes floor” , that occur in the single projection master camera view. In the next section, we
describe a simple algorithm for automatically computing these constraints with respect to the
master camera. However, we will also show that visibility can not always be resolved using
object-level occlusion constraints alone. Thus, the compositing stage of our algorithm combines
two approaches. We use object-level occlusion constraints wherever possible and fall back onto
depth-based compositing only when the occlusion constraints are ambiguous.

While additional user intervention is not required, the user may explicitly specify occlusion
constraints between pairs of objects. These user-defined occlusion constraints are added to the list
of constraints computed via the occlusion detection algorithm. Conflicts between user-specified
constraints and computed constraints are resolved in favor of the user and the conflicting com-
puted constraints are removed from the list.

4.2 Object-Level Occlusion Constraints

Object-level occlusion constraints are defined for whole objects rather than individual points of
the objects. If every point of object A is in front of object B, we say that A occludes B. To
compute the occlusion constraints with respect to the master camera, we must determine for
each pair of objects A and B whether A occludes B, B occludes A or neither. Our occlusion
constraint detection algorithm is based on an algorithm described by Snyder and Lengyel[18].

6

Occlusion Constraint Detection Algorithm

Input: Set of Objects,
 Master Camera

Output: Set of Occlusion Constraints

foreach camera group
 Render object using Master Camera into a separate
 buffer storing (Camera Group ID, depth) per−pixel
foreach pixel
 Sort objects in pixel by depth
 foreach pair of objects in sorted list
 if conflicting occlusion constraint appears in list
 Mark object pair as non−ordered
 else
 Add occlusion constraint to list

Object-level occlusion constraints may not pro-
vide enough information to merge all the image lay-
ers. There are two forms of ambiguity. When the con-
vex hulls of A and B intersect we may find that A
occludes B in some regions of the master view, while
B occludes A in other regions. Our constraint detec-
tion algorithm checks for such binary occlusion cycles
and marks the objects as non-ordered. Another type
of ambiguity arises when A and B do not occlude one
another in the master view at all, but their local image
layers do overlap. Our occlusion constraint detection

algorithm cannot provide any constraint in this case. We handle these ambiguities during the
compositing phase of the algorithm.

4.3 Compositing

The last stage of the algorithm, compositing, combines the multiple image layers produced in
the first step into a single image. If two objects map to the same pixel and there is an occlusion
constraint between them, we simply use the constraint to determine which object is visible. When
no such occlusion constraint is available (as in the cases described in the previous section), we
use depth compositing to resolve visibility.

In certain cases, occlusion cycles can pose a problem for our algorithm. Suppose there is a
three object cycle1 in which A occludes B, B occludes C, and C occludes A. Our pixel-by-pixel
compositing algorithm will produce the desired multiprojection image regardless of the order in
which it considers the objects, unless a single pixel contains all three. While it is possible to
detect such loops in the occlusion constraint graph, resolving occlusion in such cases requires an
arbitrary choice as to which object in the cycle is visible. In practice, we have found that this
problem rarely occurs, and when it does, we provide controls so that the user can choose which
object is visible.

5 Camera Constraints

When creating multiprojection images and animations, it is useful to be able to constrain the
motions of an object and its local camera in relation to one another. For example, the user
may want to dolly the camera closer to its object without changing the object’s size in the image
plane. This would produce a close-up, wide angle view of the object, thus increasing its perceived
depth without changing its relative size in the image. Such camera constraints are indispensable
for multiprojection animations, since direct specification of several dependent cameras is quite
difficult. The user might keyframe an object motion and with such constraints in place, the
cameras would automatically move in relation to the object to enforce the constraint.

We consider three camera constraints we have found particularly useful. Each constraint
is a system of equations, relating the camera parameters and object position before and after
modification. The system is typically underconstrained and we can choose some of the camera
parameters arbitrarily. Once these parameters are chosen, we use the constaints to determine the
other parameters.

Notation: Each equation will be preceded by a label (i.e. pos, dir, size, dist) describing the
constraint it imposes. We use ′ to denote the quantities corresponding to the camera and the
objects after modification. We denote the vector length as ‖a‖ and the vector dot product as a·b.
We use π[x;P, v, w, n] to denote the world-space coordinates of the projection of a point x into
the image plane with a camera defined by parameters P, v, w, n. The image plane coordinates of
the projection of x are denoted π1[x;P, v, w, n] and π2[x;P, v, w, n], as shown in figure 3.

1We remove binary cycles as described in section 4.2.

7

image
plane

n

P

π[x;P,v,w,n]

view
frustum

x

v w

P:
v:
w:
u:
up:
n:

height:
width:
f:

center of projection
camera view unit vector
image plane unit normal
world space up unit vector
image plane up unit vector
distance to image plane

along v
image plane height
image plane width
distance to far plane

Camera parameters: Projection Equations
World Space Coordinates:

π[x;P,v,w,n] = (nv.w)
x−P

(x−P).w
+ P

Image Plane Coordinates:
π1[x;P,v,w,n] = (π[x;P,v,w,n] − nv).up
π2[x;P,v,w,n] = (π[x;P,v,w,n] − nv).(up x w)

Fig. 3. Camera model and parameters.

5.1 Object-Size Constraint

Normally, as a camera moves towards an object, the projected image size of the object grows
and the perspective convergence of the object changes. The goal of the object-size constraint
is to keep the object’s size and position approximately constant while changing its perspective
convergence by dollying the camera towards (or away from) it. We characterize the object’s size
by the distances between two points on the object, x1 and x2. The constraint maintains a constant
distance between the projections of the two points and is expressed in the following equation:

size : ‖π[x1;P
′, v′, w′, n′] − π[x2;P

′, v′, w′, n′]‖ = ‖π[x1;P, v, w, n] − π[x2;P, v, w, n]‖

The simplest way to adjust perspective convergence for an object is to change the near pa-
rameter n of the camera model while leaving the height and width at the near plane unchanged.
Suppose, as in figure 4(a), we move the camera towards the center of the object to a new position
P ′ = P + (x − P)∆t. We assume that the view vector and image plane normal remain fixed
(i.e. v′ = v and w′ = w), and compute the new near distance n′:

n′ = n
‖π[x1;P

′, v, w, n] − π[x2; P
′, v, w, n]‖

‖π[x1;P, v, w, n] − π[x2; P, v, w, n]‖
In the film Vertigo, Hitchcock uses this technique to give the audience a sense of the vertigo

as experienced by the main character. Hitchcock simultaneously dollies the camera and adjusts its
focal length (i.e. near distance) to maintain the object-size constraint. The change in perspective,
with little or no change in object size and position conveys the impression of dizziness and falling.

Another interesting use of the object-size constraint is constructing artificial perspective by
combining multiple oblique projections as described in section 2.3. If we enforce the object-size
constraint, move the camera out to infinity, and also force the view vector v to be parallel to the
line between the camera center of projection P and the object center x, we obtain an oblique
projection. Although there is no vanishing point for the oblique projections, the receding paral-
lels will point towards the vanishing point of the original perspective projection. By separately
applying the constraint to each object in the scene, we combine multiple oblique projections to
produce an artificial sense of perspective. We used this approach to create plate 3.

5.2 Fixed-View Constraint

Under a perspective projection, as an object translates parallel to the image plane in world space,
different sides of the object are exposed. As the object moves from left to right with respect to
the camera center of projection, the intra-object occlusions change.

At times we wish to both maintain a fixed view of an object and move its position in the
image plane. The result is an object that translates in the image much like a 2D sprite. However,
unlike a normal sprite, an object under the fixed-view constraint continues to move in 3D and can
therefore rotate and deform as a 3D body.

As shown in figure 4(b), we must maintain the direction vector between the object center and
the camera center of projection. In addition, we would like the size and position of the object in
the image plane to be approximately the same as if the camera were not changed. That is, we

8

(a) Object−Size Constraint

(b) Fixed−View Constraint(c) Direct−Orientation Constraint
P’ = P

P

x1

P’

nv.w n’v.w

x

x2

initial camera

new camera

v
v’

x
w

w’

new
camera

initial
camera

new position
of object

x’

x1’

x2’

P

initial camera

new camera

initial position
of object

v’

v

x

x1

x2

P’

Fig. 4. Camera constraint diagrams. In (a) the image size (red) of the object remains fixed as the camera
moves towards it. In (b) as the object translates in world space, its image size (red), image position (green)
and the direction between it and the center of projection (magenta) remain fixed. For clarity we introduce
a slight separation between the image planes. In (c) the camera is reoriented so the image plane normal w′

matches the direction of the line joining x with P (magenta). The distance (cyan) between the camera and
the object’s image also remains fixed.

wish to maintain:

dir :
x′ − P ′

‖x′ − P ′‖ =
x − P

‖x − P‖
pos : πi[x

′;P ′, v′, w′, n′] = πi[x
′;P, v, w, n] i = 1, 2

size : ‖π[x′
1;P

′, v′, w′, n′] − π[x′
2;P

′, v′, w′, n′]‖ = ‖π[x′
1;P, v, w, n] − π[x′

2;P, v, w, n]‖

where, as before, x1, and x2 are two points that we use to define the size of the object.
We have found that it is convenient to choose x to be the center of the bounding sphere of an

object, and x1 and x2 to be the two extremal points of the bounding sphere such that the plane
formed by x, x1 and x2 is parallel to the image plane. Thus, x1 and x2 are the endpoints of an
interval centered at x, and their positions with respect to x do not change as the object moves.
We assume that both w and the distance from the center of projection to the image plane remain
fixed (i.e. w = w′ and nv ·w = n′v′ ·w). Then the first constraint equation can be solved for P′,
and the other two can be solved for v′ in order to determine the new position of the image plane.

5.3 Fixed-Position Constraint

The fixed-position constraint is similar to the fixed-view constraint. Instead of maintaining a
particular view of the object, the fixed-position constraint maintains the position of the object in
the image plane. As the object translates, different sides of it are exposed, but it remains in the
same place in the image plane. While the effect is similar to rotating the camera about the object,
this constraint actually produces an off-axis projection. The following constraint ensures that the
center of the object remains fixed in the image plane:

pos : πi[x;P, v, w, n] = πi[x
′; P ′, v′, w′, n′] i = 1, 2

The desired effect is that as the object moves in world space, the window of the image plane
through which we see the object shifts with it. However, the image plane does not move. Thus,
P and w remain fixed (i.e. P ′ = P and w′ = w), while v and n change.

As with the fixed-view constraint, the distance from the center of projection to the image
plane remains fixed, so nv · w = n′v′ · w. Assuming no change in camera parameters, we first
compute the displacement d of the object’s image and then use this displacement to determine
the center of the image plane for the new camera n′v′.

9

di = πi[x
′; P, v, w, n] − πi[x;P, v, w, n] i = 1, 2

n′v′ = nv + d1 up + d2 (up × w)

5.4 Direct-Orientation Constraint

In section 2.2, we observed that curved objects can appear extremely distorted under a wide-angle
projection. There are several ways to reduce this distortion.

The simplest approach is to use a parallel projection for each distorted object. For example,
with a scene consisting of a row of columns, figure 5, we would use the same orthographic
camera for all the columns to ensure that they all appear to be the same size. The drawbacks of
this approach are that the columns appear flat and that we see each column from exactly the same
side.

A better approach is to use the direct-orientation constraint. For each object we create a
camera pointed directly at this object. Equivalently, the image plane normal for each local camera
is parallel to the direction vector to the object. At the same time, we preserve the position of the
object in the image plane. Finally, we try to keep the size of the object approximately constant
in the image plane (see figure 4(c)). Instead of using a general equation of the type derived for
the object-size constraint, we use a simpler condition requiring that the distance from the camera
to the image of the object remains fixed. We obtain the following constraint equations for the
camera corresponding to the object located at x:

dir : w′ =
x − P

‖x − P‖
pos : πi[x, P, v′, w′, n′] = πi[x, P, v, w, n] i = 1, 2

dist : ‖π[x, P, v′, w′, n′] − P‖ = ‖π[x, P, v, w, n] − P‖

Assuming that the up vector u does not change, these equations uniquely determine v′ and n′

when v and n are known.

6 Results

We have created several images and animations using our multiprojection rendering system as
shown in the color plates, figure 5, and the accompanying video2. In all our examples, all occlu-
sion relationships were computed by our algorithm. Plate 1 is our reconstruction of de Chirico’s
Mystery and Melancholy of a Street. The scene is modeled as shown in the plan view thumbnail
image. The drop shadows from the building are explicitly modeled as polygons. Interactively
adjusting the five local cameras took about an hour and a half. Matching the painting took about
20 minutes and the remainder of the time was spent animating the van to move through the scene.
We made extensive use of our camera constraints throughout the process. To place the local cam-
era of the brown building, for example, we initially set the image plane of the camera parallel
to the front face of the building. We then used the object-size and fixed-position constraints to
interactively adjust the vanishing point for its receding faces until they matched the painting. The
van was animated to go around the brown building using a combination of object motion and
camera motion. Note that as the van moves from being in front of the brown building to going
behind it, the occlusion relationship between the two objects is updated automatically.

The multiprojection still life in plate 2 was inspired by Cézanne’s Still Life with Fruit Basket
and adjusting the 10 local cameras took about an hour for this scene. Plate 3 is shows a compari-
son of an overhead view of a city rendered using multiple oblique projection to create an artificial
sense of perspective in (a), and a true perspective projection in (b). There are two advantages
to using multiple oblique projections. First, more of the scene is visible; in the true perspective
many building extend beyond the field of view the image and there is more occlusion between

2http://graphics.stanford.edu/papers/mpr/video

10

buildings than in the multiple oblique view. Second, it is easier to judge the relative rooftop sizes,
and the area of the block that each building covers in the multiple oblique view. Plate 4 shows
some frames from an animation we created using the fixed-view constraint. In parts (a) and (b)
we show how the fixed-view constraint improves the composition of the scene. The fixed-view
constraint only affects translational motions. Unlike traditional sprites, objects can rotate and
deform as 3D bodies as shown in the frames on left side of plate 4.

(c) Direct−Orientation

(a) Single Proj. Wide−Angle

(b) Parallel Projection

Fig. 5. Reducing the wide-angle distortion of curved objects

The columns in figure 5(a) ap-
pear distorted due to a wide-angle
camera. If we use a parallel pro-
jection for the columns as in fig-
ure 5(b) (see camera schematic),
the distortion is corrected, but each
column appears flat and the light-
ing is wrong: every column is lit
identically. A better approach is
to use the direct-orientation con-
straint to aim each local camera at
its column as in figure 5(c). Since
the local cameras all have the same
center of projection, we see ex-
actly the same parts of each col-
umn as in the original view and the
lighting is correct because the vis-
ibility is unchanged. We have col-

ored one of the columns and its local camera green in the camera schematic to show how the local
camera is reoriented.

Our implementation of the multiprojection rendering algorithm uses hardware rendering to
maintain an interactive interface. The main bottleneck in the rendering algorithm is this multipass
read/write of the framebuffer required before rendering each camera group and resolving visibil-
ity. Therefore rendering performance is based on the number of camera groups in the scene and
the size of the image. Despite the read/write bottleneck, we are able to achieve interactive fram-
erates for most of our test scenes running on a SGI RealityEngine graphics system. For example,
the multiprojection still life contains 10 camera groups and renders at a rate of 3 to 5 frames per
second at a resolution of 333 x 256. Other scenes containing fewer cameras render more quickly.
The de Chirico scene containing five camera groups renders at 10 - 12 frames per second at a
resolution of 402 x 491.

In addition to the interactive interface, we built a script-based animation system for creating
keyframed multiprojection animations. Obtaining visually pleasing results with a multiprojec-
tion animation is somewhat difficult because animation adds motion parallax as a cue about the
spatial relationship between objects. The motion parallax may conflict with the perspective and
occlusion cues, disconcerting the viewer. When the entire scene is moved by applying the same
transformation to every object in the scene (or equivalently to every camera in the scene), each
object will move and scale at a different rate since the local cameras may be very different. We
have found that in most cases animating objects in the scene, while holding the background en-
vironment fixed, works well. Moving the entire scene tends to only work for relatively small
translations and rotations. One notable exception is when all the local cameras have the same
center of projection as in the row of columns example in figure 5. In this case, moving the entire
scene does not cause any unexpected effects.

7 Future Work and Conclusions

We have presented a multiprojection rendering algorithm as well as a constraint-based camera
specification interface. Using this system, it is possible to create a large variety of still and
animated visual effects that can not be created with a standard, single projection rendering system.

11

There are several directions in which to expand this work. As we described in the previ-
ous section, not all types of animation produce pleasing results. Moreover, animation requires
keyframing the motion over every object by hand. While our camera constraints can make it
easier to produce certain types of camera motions, the constraints are designed to produce very
specific effects. It would be useful to incorporate a more flexible constraint-based interface for
cameras, similar to the design of Gleicher and Witkin [4], in both our camera specification inter-
face and our animation system.

It is unclear how to handle lighting effects like shadows and reflection in the multiprojection
setting. We currently assume that all lights are specified in the global scene and each camera
group is lit based on its local camera viewpoint. The difficulty arises when we try to cast a
shadow from one camera group onto another. Despite these issues, multiprojection images are an
effective device for creating a variety of artistic effects.

8 Acknowledgements

Thanks to Pat Hanrahan for giving us insightful feedback throughout the course of this work.
Gregory Lam Niemeyer’s artistic guidance was invaluable during the early stages of the project.

References
[1] J. O. Dorsey, F. X. Sillion, and D. P. Greenberg. Design and simulation of opera lighting and projection effects. In

Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 41–50, July 1991.
[2] F. Dubery and J. Willats. Perspective and Other Drawing Systems. Van Nostrand, 1983.
[3] G. Glaeser and E. Gröller. Fast generation of curved perspectives for ultra-wide-angle lenses in VR applications. The

Visual Computer, 15:365–376, 1999.
[4] M. Gleicher and A. Witkin. Through-the-lens camera control. In E. E. Catmull, editor, Computer Graphics (SIG-

GRAPH ’92 Proceedings), volume 26, pages 331–340, July 1992.
[5] D. W. Graham. Composing Pictures. Van Nostrand Reinhold Company, 1970.
[6] S. Guarnaccia. 53rd Street Map. In N. Holmes, editor, The Best in Diagrammatic Graphics, pages 174–175. Quarto

Publishing, 1993.
[7] A. Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. In SIGGRAPH 98 Conference Pro-

ceedings, pages 453–460. ACM SIGGRAPH, Addison Wesley, July 1998.
[8] G. Humphreys and P. Hanrahan. A distributed graphics system for large tiled displays. IEEE Visualization ’99, pages

215–224, October 1999.
[9] M. Inakage. Non-linear perspective projections. In Modeling in Computer Graphics (Proceedings of the IFIG WG

5.10 Working Conference), pages 203–215, Apr. 1991.
[10] M. Kubovy. The Psychology of Perspective and Renaissance Art. Cambridge University Press, 1986.
[11] J. Levene. A framework for non-realistic projections. M.eng. thesis, MIT, 1998.
[12] H. Löffelmann and E. Gröller. Ray tracing with extended cameras. The Journal of Visualization and Computer

Animation, 7(4):211–227, Oct.-Dec. 1996.
[13] E. Loran. Cezanne’s Composition. University of California Press, 1943.
[14] N. L. Max. Computer graphics distortion for IMAX and OMNIMAX projection. In Nicograph ’83 Proceedings, pages

137–159, Dec. 1983.
[15] P. Rademacher and G. Bishop. Multiple-center-of-projection images. In SIGGRAPH 98 Conference Proceedings,

pages 199–206, July 1998.
[16] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of the future: A unified approach to

image-based modeling and spatially immersive displays. Proceedings of SIGGRAPH 98, pages 179–188, July 1998.
[17] G. Savransky, D. Dimerman, and C. Gotsman. Modeling and rendering Escher-like impossible scenes. Computer

Graphics Forum, 18(2):173–179, June 1999.
[18] J. Snyder and J. Lengyel. Visibility sorting and compositing without splitting for image layer decomposition. In

SIGGRAPH 98 Conference Proceedings, pages 219–230, July 1998.
[19] J. Willats. Art and Representation: New Principles in the Analysis of Pictures. Princeton University Press, 1997.
[20] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin. Multiperspective panoramas for cel

animation. In SIGGRAPH 97 Conference Proceedings, pages 243–250, Aug. 1997.
[21] D. Zorin and A. H. Barr. Correction of geometric perceptual distortion in pictures. In R. Cook, editor, SIGGRAPH 95

Conference Proceedings, Annual Conference Series, pages 257–264. ACM SIGGRAPH, Addison Wesley, Aug. 1995.

12

Plate 1. Our reconstruction of Giorgio de
Chirico’s Mystery and Melancholy of a Street.
The thumbnails show the 5 local camera views,
with attached geometry highlighted in green.

white
bldg

van

brown
bldg

Plate 3.Multiple oblique projections create an artificial sense of
perspective, but still allow some area comparisons. In (b) the pink
building’s rooftop area (arrow) is exaggerated. In (a) it correctly
appears to be about the same size as the gray rooftop next to it.

(a) Multiple Oblique Projections

(b) True Perspective Projection

Plate 4.Our fixed−view constraint can improve composition and give
scenes a "cartoony" feel. In (a) it is possible to see the faces of both
characters. In (b) the sitting character’s face is not visible. The
constraint only affects translational motion, so objects can rotate and
deform as 3D bodies. In the animation frames to the left, the fixed−view
constraint is enforced on both cars. In the first and last frame the
views of the cars are the same, but when the blue car turns to pass the
red car in the middle two frames, we can see the tires rotate and the blue
character’s uniform becomes more visible than that of the red character.

(a) Fixed−View Constraint on Car (b) Single Projection

Plate 2. A multiprojection still life containing 10 camera groups took
about an hour to create with our system. The impressionist style
painting was created in a post−process using Hertzmann’s [7] image
processing algorithm.

13

