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Abstract to explain the objects’ identities and causal histories [Marr 1982;
Leyton 1992; Hoffman 1998; Regan 2000]. The fact that looking at
Good information design depends on clarifying the meaningful a picture so often brings an effortless and detailed understanding of
structure in an image. We describe a computational approach toa situation testifies to the precision and subtlety of these inferences.
stylizing and abstracting photographs that explicitly responds to o, yisual abilities have limits, of course. Good information
this design goal. Our system transforms images into a line-drawing yesign depends on strategies for reducing the perceptual and cog-
style using bold edges and large regions of constant color. To do yjtiye effort required to understand an image. When illustrations
this, it represents images as a hierarchical structure of parts andy e rendered abstractly, designers can take particularly radical steps
boundaries computed using state-of-the-art computer vision. Our clarify their structure. Tufte [1990] for example suggests mak-
system identifies the me_aningful elements of this ’structure using @ing detail as light as possible to keep the main point of a presenta-
model of human perception and a record of a user's eye movementsjon perceptually salient, and warns against adding any detail that
in looking at the photo; the system renders a new image using trans-gaesn't contribute to the argument of a presentation. Thus expert
formations that preserve and highlight these visual elements. Oury giration in instruction manuals portrays fine detail only on the
method thus represents a new alternative for non-photorealistic réN-object parts relevant to the current task. When artists purposely
dering both in its visual style, in its approach to visual form, and in et these heuristics, as in the populithere’s Waldo?pictures
its techniques for interaction. [Handford 1987]—which offer the visual system no salient cues to
CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage Gen- find their distinguished character—they make extracting visual in-
eration; 1.4.10 [Image Processing and Computer Vision]: Image formation acutely demanding.
Representation—Hierarchical This paper describes a computational approach to stylizing and
abstracting photographs that responds in explicit terms to the design
goal of clarifying the meaningful visual structure in an image. Our
approach starts from new image representations that recognize the
visual parts and boundaries inherent in a photograph. These repre-
1 Introduction sentations providg the scaffolding to preserve and even emphasize
key elements of visual form. A human user interacts with the sys-

The success with which people can use visual information masks tém to identify meaningful content of the image. But no artistic
the complex perceptual and cognitive processing that is required. {2leént is required, nor even a mouse: the user sirfqksat the
Each time we direct our gaze and attention to an image, our visual image for a short period of time. A perceptual model translates the
intelligence interprets what we see by performing sophisticated in- data gathered from an eye-tracker into predictions about which ele-
ference to organize the visual field into coherent regions, to group Ments of the image representation carry important information. The

the regions together as manifestations of meaningful objects, andSimplification process itself can now apply an ambitious range of
transformations, including collapsing away details, averaging col-

ors across regions, and overlaying bold edges, in a way that high-
lights the meaningful visual elements. Results are shown above and
in Section 5.

Since we aim for abstraction, not realism, our research falls
squarely within the field of non-photorealistic rendering (NPR)
[Gooch and Gooch 2001]. In the remainder of this section, we sit-
uate our approach within this field and clarify the contribution that
our approach makes. Then, after a review of relevant research in
human and machine vision in Section 2, we describe first our im-
age analysis algorithm in Section 3 and then our perceptual model
and simplification transformations in Section 4.

Keywords: non-photorealistic rendering, visual perception, eye-
tracking, image simplification
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1.1 Motivations and Contributions form heuristically by emphasizing parts and boundaries in an im-

] ] age through techniques such as aligning brush strokes perpendicu-
In the hands of talented artists, abstraction becomes a tool for ef-|ar to the image gradient [Haeberli 1990], terminating brush strokes
fective visual communication. Take the work of TOUlOUSE'LaUtrEC, at edges [Litwinowicz 1997], or drawing in a coarse-to-fine fash-
in Figure 1 for example. No account of the poster, advertising the jon [Hertzmann 1998; Shiraishi and Yamaguchi 2000]. NPR ren-
Parisian cabaretloulin Rouge could omit its exciting and mem-  dering methods that work from geometric models can cue visual
orable content. But the content commands the attention it does inform in more general ways, by detecting edges that arise from oc-
no small part because of the directed, simplified organization of the cluding contours or creases [Saito and Takahashi 1990; Markosian
poster: Toulouse-Lautrec has rendered the scene with meaningfulet a1, 1997], and by determining appropriate directions for hatching
abstraction. As observed by vision scientists such as Zeki [1999], [Hertzmann and Zorin 2000]. But models of visual form also have
such abstraction results in an image that directs your attention toa fundamental role in understanding human and machine vision,
its most meaningful places and allows you to understand the struc-and even human artistic style. For instance, Koenderink [1984b]
ture there without conscious effort. Such examples make sense ofproves that convex parts of the occluding contour of a smooth sur-
the aims of the field of non-photorealistic rendering, to produce ab- face correspond to convexities of the surface, and that concave parts
stract renderings that achieve more effective visual communication of the contour correspond to saddles; he then provides an example

[Herman and Duke 2001]. of Diirer's engravings that exhibit changes in hatching technique
where the sign of the contour curvature changed.
Our system models visual form using state-of-the-art techniques
83“# ggggg B A L fro_m computer vis@o_n to identify the natural parts and boundaries
TOUS Les SOIRS in images [Comaniciu and Meer 2002; Meer and Georgescu 2001;
LA GOULUE Christoudias et al. 2002]. Our system is the first to formulate the
Y W o process of abstraction completely in terms of a rich model of visual
2 form.

Automatic techniques are more limited in their abilities to reduce
extraneous detail. This is because automatic techniques cannot as of
yet identify themeaningfuklements of visual form. (Some may ar-
gue the problem will never be solved.) Selective omission is possi-
ble in specific domains. The right illumination model can eliminate
distracting variations in brightness [Gooch et al. 1998]. In drawing
trees, texture information can be omitted in the center of the tree, es-
pecially as it is drawn smaller [Kowalski et al. 1999; Deussen and
Strothotte 2000]. The design of route maps can draw upon rules
that embody how people use maps effectively [Agrawala and Stolte
2001]. For general image-based techniques the options are few;
automatic painterly rendering systems simply reduce global reso-
lution by using larger brushes [Haeberli 1990; Litwinowicz 1997;

e Hertzmann 1998; Shiraishi and Yamaguchi 2000]. Meaningful ab-

straction can only be achieved through interaction. This paper is no

Figure 1: Henri de Toulouse-Lautrec's “Moulin Rouge—La exception. Our approach builds upon methods for manually direct-
Goulue” (Lithographic print in four colors, 1891). The organiza- ing indication in pen-and-ink illustration [Winkenbach and Salesin
tion of the contents in this poster focuses attention on the dancer La1994], and for controlling drawing [Durand et al. 2001] or painting
Goulue as she performs the Cancan. The use of bright, uniform col- [Hertzmann 2001] from an image using a hand-painted precision
ors distinguishes the figure from the background, while the place- map. More detailed and time-consuming interaction is possible, as
ment of strokes on her dress provides rich information about its in the production ofMaking Life which relied on a combination of
shape and material. Meanwhile, her dance partner lacks the colorsrotoscoping and other animation techniques.
(but has detail strokes), and background objects such as the specta- For interaction, this paper offers a new choice of modality—eye
tors, are simply drawn in silhouette. movements [Santella and DeCarlo 2002]—and contributes new al-
gorithms that formalize the link between fixations, perceptiad
visual formto use this input effectively.

Abstraction depends on adopting a rendering style that gives the . .
P ping 9sy g A summary of our process used to transform an image is as fol-

freedom to omit or remove visual information. Painterly process-

ing, which abstracts images into collections of brush-strokes [Hae- lows:
berli 1990; Litwinowicz 1997; Hertzmann 1998; Shiraishi and Ya- e Instruct a user to look at the image for a short time, obtaining
maguchi 2000], is a notable example of such a style. a record of eye movements.

Our system transforms images into a line-drawing style using
large regions of constant color; this style is very different from the
painterly approaches of previous image-based work, and perhaps . i )
more closely approximates the style of printmaking of Figure 1. A ® Render the image, preserving the form predicted to be mean-
similar visual style was used in the recent fligaking Lifé and for ingful by applying a model of human visual perception to the
producing “loose and sketchy” animation [Curtis 1999]. eye-movement data.

Once a style is in place, the key problem for interactive and auto- we design the system conservatively, so that errors in visual analy-
matic NPR systems is to direct these resources of style to preservesjs or flaws in the perceptual model do not noticeably detract from
meaningful visual form, while reducing extraneous detail. Visual the result. Even so, manifestations of their limitations can be quite
form describes the relationship between pictures of objects and thenoticeable for certain images, such as those with complex textures.
physical ObjeCtS themselves. Painterly abstraction can cue ViSUalNeverthe|eSS’ we expect that advances in computer vision and hu-
man vision can be used directly, enabling our system to make better
1Seenttp: //www.wakinglifemovie. com. and richer decisions.

e Disassemble the image into its constituents of visual form us-
ing visual analysis (image segmentation and edge detection).
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(d)

Figure 2: (a) Original image; (b) Detected edges; (c) Color segmentation; contiguous regions of solid color in these images represent
individual elements of the segmentation; (d) Color segmentation at a coarser scale (the image was first down-sampled by a factor of 16)

2 Background finer scale. This theory serves as the basis for our hierarchical repre-

sentation of the image, described in Section 3. Our algorithm uses

2.1 Image Structure and Analysis segmentation algorithms applied at a variety of scales, and finds
containment relationships between their results.

Our approach uses low-level visual processing to form a hierarchi-

cal description of the image to be transformed. The style of our out-

put will be a line drawing—uniformly colored regions with black

lines. We use algorithms for edge detection and image segmenta-q ;- ynpjication relies on the fact that human eye movements give
tion to gather the information necessary to produce such a display.qong evidence about the location of meaningful content in an im-
There are a vast number of algorithms available for these processeSége. This section briefly summarizes the psychological research

in this section, we simply describe which we are using and why. 46,t the architecture of human vision that informs our work. We
Computer vision texts (such as [Trucco and Verri 1998]) provide ¢, s in particular on perception of static imagery.

reviews of alternative techniques. For the remainder of this sec- People can examine only a small visual area at one time, and so

tign, examples.of processing will be given for the photograph in understand images by scanning them in a seridixations when
Figure 2(a), Wh.'c.h is a 1024768 color Image. . . the eye is stabilized at a particular point. The eye moves between
Edge detectiois the process of extracting out locations of high a5 fixations in discrete, rapid movements cadlaccadestypi-
contrast in an image that are likely to form the boundary of objects ¢4y \without conscious planning. The eye can move in other ways,
(or their parts) in a scene. This process is performed at a particularg ¢y a5 smoothly pursuing a moving object, but the saccades and
scale (using a filter of a specific size). The Canny edge detector gy ations are the key to understanding static images.
[Trucco and Verri 1998] is a popular choice for many applications, gy ations follow the meaningful locations in an image closely
as it typically produces cleaner results. We use the robust Variant[Mackworth and Morandi 1967; Henderson and Hollingworth
of the Canny detector presented by Meer and Georgescu [2001],199g) "and their durations provide a rough estimate of the process-
Wh'Ch addltlonglly uses |ntfernal pgrformance assessment to detec"ing expended on understanding corresponding parts of the image
faint edges while disregarding spurious edges arising in heavily tex- 3,5t and Carpenter 1976]; fixations that land on uninteresting or
tured regions. Detected edges (using-asfilter) are displayed innimportant objects are very short [Henderson and Hollingworth
Figure 2(b); processing took a few seconds. _ _ 1998]. Naturally, the information a person needs depends on their
An image segmentatiois simply a partition of an image into a5k "and fixation locations change accordingly [Yarbus 1967; Just
contiguous regions of pixels that have similar appearance, such asypq Carpenter 1976].
color or texture [Trucco and Verri 1998]. Each region has aggregate  yyjithin each fixation, the fine detail that will be visible depends
properties associated with it, such as its average color. We choosey, jiscontrast its spatial frequencyand itseccentricity or angular
the algorithm described by Comaniciu and Meer [2002] for the ro- istance from the center of the field of view [Mannos and Sakrison
bust segmentation of color images, as it produces quite clean re-1974- Koenderink et al. 1978; Kelly 1984]. Contrast is a relative
sults. Within this algorithm, colors are represented in the perceptu- measyre of intensity of a stimulus, as compared to its surroundings
ally uniform color spacé”u"v [Foley et al. 1997] which produces (itjs dimensionless). In psychophysical studies, the typical measure
region boundaries that are more meaningful for human observers. ¢ ~ontrast between two intensitigsandl,, (with |, being brighter)

The parameters of this algorithm include a spatial raiysimilar . i o, .
to the radius of a filter), a color difference threshbjdand the size S the Michelson contras#.FE [Regan 2000] (which is always be-

of the minimum acceptable regid. The output of this segmenta-  tween 0 and 1). Contrast sensitivity, which is simply the reciprocal

2.2 Visual Perception

tion algorithm on our test image is shown in Figure 2(c)Hge 7 of the contrast, is the typical measure used by psychophysicists to
(in pixel units), hy = 6.5 (in L*u*v* units), andM = 20 (pixels); gauge human visual performance. Drawing on results from experi-
processing took slightly over a minute. ments on the perception of sine gratings (i.e. blurry stripes), Man-

These two algorithms can be combined together into a single sys-nos and Sakrison [1974] provide a contrast sensitivity model that
tem [Christoudias et al. 2002], yielding even better results; edges describes the maximum contrast sensitivity (or minimum contrast)
can be used to predict likely segmentation boundaries, and viceVisible at a particular frequendly (in cycles per degree):
versa. A freely available implementation of these algorithms is
available ahttp: //www.caip.rutgers.edu/riul. A(f) = 1040(0.0192-+ 0.144f )~ (01440™ 1)

Scale-spaceheory [Koenderink 1984a; Lindeberg 1994] pro-
vides a description of images in terms of how content across differ- This is graphed in Figure 3(a) in log-log scale; frequency-contrast
ent resolutions (scales) is related. This is formalized with a notion pairs in the shaded region correspond to gratings discernible to the
of causality: as images are blurred, smaller features come togethethuman eye. Above this curve, the gratings simply appear as a uni-
to form larger objects so that all coarse features have a “cause” at aform gray. This particular model has been used in graphics for
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viewers do not have to use or attend to the eye-tracker or to their
eye movements—ijust to the image. People are already adept in lo-
cating the desired information in images. We aim to exploit this
natural ability in our interface, not to distract from it by suggesting
that the user make potentially unnatural voluntary eye-movements.
This paradigm still enables a computer system to draw substantial
inferences about a user’s attention and perception. We expect to see
it used more widely.

invisible
visible

Contrast

1 T
05

1 10 50
Spatial frequency (cycles/degree)

(a) (b) 3 Hierarchical Image Representation

Figure 3: (a) A contrast sensitivity function describes the maximum Our image simplifications rest on a hierarchical representation of
discernible contrast sensitivity as a function of frequency (of a sinu- visual form in input images. Each image is analyzed in terms of
soidal grating). Values above the curve (which have low contrast) its constituent regions by performingsegmentatiorat many dif-
are invisible. (b) Fixations gathered using the image in Figure 2(a). ferent scales. We depend on regularitieséale-spacé¢o assemble
Each circle has its center at the estimated location of the fixation, this stack of image segmentations into a meaningful hierarchy. This
while its diameter indicates its duration (the scale in the lower left section describes how we create this representation and how we ex-
measures 1 second). tract edges using the methods described in Section 2.1. Other multi-
scale segmentation algorithms already exist in the vision commu-
nity [Ahuja 1996]; here we draw on available code to help allow

producing perceptually realistic images of scenes [Pattanaik et al, OUr results to be more easily reproduced [Christoudias et al. 2002].
1998; Reddy 2001]. Campbell and Robson [1968] adjust this model . We Start with an image pyramid [Burt and Adelson 1983], which
for the viewing of square-wave gratings (i.e. crisp stripes). Color IS @ collection of images; each one is down-sampled by a constant
contrast is a much more complicated story, however, and is not well factor from the previous one. We use a constant factoy®f(in-
understood [Regan 2000]. For colors that only differ in luminance, stead of the typical value of 2), which produces more consistency
the above model applies reasonably well. When they differ further, between structures across levels, and admits a simple algorithm to
sensitivity is typically increased. Further psychophysical studies infer a hierarchy. A segmentation is computed for each image in
are also required to develop better models for natural scenes as opthe pyramid (using the parameterg:= 7, hy = 6.5, M = 20). Fig-
posed to simple repeating patterns. ure 2(d) shows the segmentation result of an image down-sampled

Contrast sensitivity decreases as a function of eccentricity Py a factor of 16. While the alternative of segmenting the original
[Koenderink et al. 1978]. A concise model describing this reduc- image at a series of increasing spatial resolutions is more faithful to
tion [Rovamo and Virsu 1979] has been used for modeling visual Scale-space, itis substantially slower.
acuity (which describes the highest spatial frequency that can be re-  Edges are detected in the original image using>aSkernel.
solved at maximum contrast) for performance-based visualization For this application, we have not found it necessary to detect edges
of 3-D environments [Reddy 2001] or for deciding an appropriate at different scales. Through a process called edge tracking [Trucco
brush size in painterly rendering [Santella and DeCarlo 2002]. In and Verri 1998], detected edge pixels come together to form indi-
terms of the eccentricity angke(in degrees), the sensitivity reduc-  Vidual curves, which are each represented as a sequence of pixel
tion factorM(e) is 1 at the fovea center and decreases towards 0 locations. This results in a list eidge chainsThese are the source
with increasinge. The resulting contrast sensitivity function that ~ Of the curved strokes drawn in our output.
depends on eccentricity is simph(f)M(e).

These limits on sensitivity within the visual field fit hand-in-hand - .
with the ability of the visual system to integrate information with 3.1 Building the Hierarchy

movements of the eyes and head. Thus, we combine informationWe now form a hierarchy starting from the regions in the segmen-
about fixation location with information about sensitivity to fine tation of the bottom image of the pyramid (the largest image in
detail in making decisions about which features in an image were the stack). Sca|e_space theory suggests regions in finer scale seg-
prominently visible to a user. mentations are typically included within regions at coarser scales

The key tool to obtain this information is aye-trackercapable (there are exceptions, however) [Lindeberg 1994]. These contain-
of sampling an observer's point of regard over time. Eye-tracker ments induce #ierarchy of image structures. Figure 4(a) shows
technology is steadily improving; they can now be placed in any an idealized example of such a hierarchy. Regions A, B, C and D
work environment and used with just a brief calibration step. Upon are detected at a fine scale, where A and B combine into AB and
viewing the image in Figure 2(a) for five seconds, our ISCAN ETL- C and D combine into CD at a coarser scale, and all combine into
500 eye-tracker (with an RK-464 panftilt camera) tracks the sub- a single region ABCD at an even coarser scale. To represent this
ject’s eye movements. Corresponding fixation locations and dura- hierarchy, we can construct a tree (on the right of Figure 4(a)) that
tions are detected using a velocity threshold [Duchowski and Verte- documents the containment relationships of regions found by seg-
gaal 2000], and are plotted in Figure 3(b) as circles centered at thementing at various scales. The nodes in the tree contain properties
fixation location; the diameter of the circles is proportional to the of that region, such as its area, boundary, and average color.
duration. Noise in the images and artifacts from the segmentation prevent

Eye-trackers have seen appreciable use in human-computer inthis from being a perfect process. Even so, we can define a hier-
teraction research. A common function is as a cursor [Sibert and archy where parents are defined as the union of the areas of their
Jacob 2000], either on the screen or in a virtual environment. Other children regions. In doing this, virtually all of the cases are clear-
roles include assessing user attention in teleconferencing systemssut, allowing us to use a simple algorithm for building the hierarchy
[Vertegaal 1999], and using gaze to guide decisions for image from the leaves up. For questionable situations we rely on a sim-
degradation and compression [Duchowski 2000]. ple heuristic to make the choice, with the possibility of deferring a

In our case, we use the eye-tracker indirectly in the computer choice should it cause an invalid tree (regions must be connected).
interface. Our instructions are simply “look at the image”; and The algorithm is as follows.
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coarser : such that every path from the root to a leaf includes precisely one
scales a node fromF.) In producing the rendering, our system smooths the
ABCD ABCD boundaries of these frontier regions, draws them onto the canvas,
(Y

and then overlays lines using the edge chains.
level L ” The perceptual model, which relies on eye movement data to
AB CD 4’ compute eccentricities, is used to decide where to place the frontier
ANB;

and which lines to draw. A depth-first search defines this frontier;

the access to the perceptual model is a boolean funstair(n),

which determines whether to draw all children of the nadmsed
@ on the available fixation data (via eccentricities). The recursion pro-

e ceeds by visiting a node If spLIT(n) is true, then all of its children

(@) (b) are visited. Otherwise, it is simply marked as a frontier node.

PO
=
-

Figure 4: (a) A hierarchical segmentation, and its corresponding 4.1  Using fixation data

tree representation; (b) the overlap rule used to infer this hierarchy

from the segmentation pyramid. Our new model interprets eye-tracking data by reference to
our hierarchical description of image contents. Our raw data
is a time-indexed sequence of points-of-regard measured pas-

g Sively by an eye-tracker as the viewer examines the image.

for each region in the bottom (finest scale) segmentation of e parse this intd fixations [Duchowski and Vertegaal 2000]

the pyramid. Add each of these regions to the active set of {fi = (4,%,4) [ € [1. K} where(x; y;) are the image coordinates

regionsR (which will be maintained to be those regions which  ©f the fixation point, and is its duration. ) ,
currently have no parent). In many cases, eccentricities of regions with respect to a partic-

ular fixation are solely determined using that fixation. However,
e Proceeding up the pyramid, at level estimating thearget of each fixation enables sharp delineations of
detail in the output. Each fixatiof is associated with a target re-
— For each active regios € R (which comes from alower ~ gionn; in the segmentation tree—this represents the coherent part
level), compute its best potential par@jt From the set of the image that was viewed. We use the following method to de-

e Provided with the pyramid of segmentations, a leaf is create

of regions{B;} on levelL which overlap withA, P, is terminen;, as human vision research currently has little to say about
selected from this set as the one which maximizes: this. Centered at each fixation is a circle whose size matches 5 de-
grees of the center of the viewer’s visual field—roughly the size of
overlagA B ) — aredANB;) their fovea [Regan 2000] (180 pixels across in our setup). We deter-
" ||color(A) —color(B;) || +1 minen; as the smallest region that substantially overlaps this circle:

there must be a set of leaf regions witlnirthat are entirely inside

where colors are expressedLlifu*v* . This is depicted the circle, which, taken together, comprise an area greater than half
in Figure 4(b). the circle and also greater than halfpf When no such region
exists, the target cannot be identified, and set to be the leaf that
contains the fixation point. The set of nod¥s= {n, |i € [1..k]}
thus reports thearts of the imagé¢hat the user looked at.

For a particular fixatiorf; and regiorr, whenr is either an an-
cestor or descendant of, then its eccentricity with respect fp

— Assign regions to parents in order of increasing
aredANP,), contingent on it being connected to the
childrenP, already has (this prevents the formation of
disconnected regions).

— When assigned, removk from R and addP, (if not measures the angular distance to the closest pixel @therwise,
already present); unassigned regions remaR in r is assigned a constant eccentria#y, ;4 for f;; this provides a
. . . . parameter that affects the level of content in the distant background
o Of the remaining regions iR, those under 500 pixels are  (we usee, 4= 10°). This regime induces discontinuities in es-

merged into adjacent regions (as they probably violated scale- timated eccentricity at part boundaries, which means background

space containment). A root region that represents the entire information that is adjacent to important regions is not inappropri-

image parents the rest. ately emphasized, as it was in our previous approach [Santella and
DeCarlo 2002].

4 Rendering with a Perceptual Model
4.2 Region Perceptibility

The rendering process works directly from the hierarchical segmen- The pruning of the seamentation tree is based on decisions made b
tation and edge chains that were described in the last section. The, pruning 9 : ! ISl y

output is abstracted by pruning the segmentation tree and list of the perceptual model. In this model, the prominence of a region de-
edge chains: working from a set of fixations, structure is removed pends on its spatial frequency and contrast relative to its surround-

if the perceptual model predicts the user did not see it. This percep- ings, as given by the cont.rast.senslltlwty threshlold (see Section 2.2).
tual model extends our previous work [Santella and DeCarlo 2002]  The frequency of a region is estimatedfas: 5, [Reddy 2001],

in two ways that rely on our new representations of visual form. WhereD is the diameter of the smallest enclosing circle. In keep-

First, the new model uses region structure to judge contrast sen-iNg With our understanding of our hierarchical structure as a rep-
sitivity (instead of acuity). Second, it computes perceptibility of eSentation of meaningful relations in the image, we estimate the
image regions rather than individual pixels. This allows the new Ccontrast of a region by a weighted average of the Michelson con-

model to be much more selective in highlighting important image [rast with itssisterregions, where the weights are determined by
parts and boundaries and in discarding extraneous detail. the relative lengths of their common borders (this reduces to an

With our new model, a rendering of a line-drawing using the ordinary contrast measure for regions with one sister region). In

hierarchy simply corresponds to drawing those regions on a partic- considering color contrast [Regan 2000], we use a slight variation:

ular frontier of the segmentation tree. flantier is a sef of nodes % (using colors inL*u*v*). This reduces to the Michelson
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contrast in monochromatic cases, and otherwise produces distancepotentially important detail in lines (recall that they were extracted

that steadily increase with perceptual differences in color. out using a fixed-size kernel). This also affects the placement of
A simple model of attentiora(t;) used in our previous work long lines so that they are not perfectly aligned with regions. The
[Santella and DeCarlo 2002] factors in the fixation duratioto line thicknesg depends on the lengthand is defined as the affine

scale back the sensitivity threshold. In effect, it ignores brief fixa- function which maps a range of line lengths,,Imax to a range

tions that are not indicative of substantial visual processing, to ac- of line thicknesseft,.;,tmax (abovelmay, thicknesses are capped at

commodate the perceptual search required to scan a detailed imagemay). Lines are drawn in black, and are linearly tapered at each end
We are now ready to define the functispLiT(n) for the region over the first and last third of their length (unless the end touches an

n. This region is split into its children if at leakalf of its children image boundary). We choo$g,. ., tmax = (3,10 and(l i,,Imax =

could have been perceived by any fixation. That is, a child region [15,500 as default values.

with frequencyf, contrastc, and eccentricityg, (for fixationf;) is

perceptible when:
5 Results

c < ig[]ﬁ)li] [A(max(f7 fmi“)) ' M(e|)~a(ti)] ) An interaction with our system proceeds as follows. An image is

selected for transformation, and is displayed on the screen in the
The lower bound off;, (defaults to 4 cycles per degree) imposed presence of an eye-tracker. The user is instructed to “Look at the
on the frequencies used by the contrast model takes into accounimage.” The image is then displayed for five seconds. In the ex-
that low-frequency square-wave gratings are visible at lower con- amples that follow, all parameters are set to default values unless
trasts than sine gratings [Campbell and Robson 1968] (this flat- otherwise listed. Images and eye-movement data are available at
tens out the left side of the curve in Figure 3(a)). To enable more http://www.cs.rutgers.edu/ decarlo/abstract.html.
substantial simplifications, we employ a contrast scaling coefficient ~ We present three examples in Figures 5, 6 and 7. For each exam-

Cscale

C.cqlet0 reduce contrast sensitivity (the default value.i5)0This is ple, building the pyramid and hierarchy took about 3 minutes, and
a helpful parameter in fine-tuning the results, as it provides a global rendering took 5 to 10 seconds. The source images are displayed in
control for content. (a), with the fixations that were collected by the eye tracker marked

on the lower image. In each case, the line drawing that results is dis-

played in (b); each of these clearly exhibits meaningful abstraction.

The additional renderings in Figure 7(c) illustrate the line drawing

Frontier regions form a partition of the image. However, the detail style without the use of fixation data. Instead, these drawings use a

level of boundaries is uniformly high, since all boundaries derive constant eccentricity in deciding whether or not to include individ-

from the lowest segmentation. Before rendering, the frontier re- ual regions. On the top is a drawing that maintains fine detail across

gion boundaries are smoothed, so that the frequencies present arghe entire image, while on the bottom only coarse structures are pre-

consistent with the region size. Then, the regions are filled in with served; neither clearly contains an obvious subject. This demon-

their average color. Figure 6(c) demonstrates the effectiveness ofstrates our interactive technique: tracking eye movements enables

smoothing (showing before and after). meaningful abstraction. However, the images in Figure 7(b) and (c)
The network of boundaries induced by the frontier regions can be are still clearly produced using the same style.

viewed as a set of curves. These curves join together at those points

where three or more regions touch (or possibly two regions on the . .

image border). Interior curves (which are not on an image border) 6 Discussion

are smoothed using a low pass filter, where the endpoints of the

curve are held fixed [Finkelstein and Salesin 1994] (this preservesIn this paper we have presented a new alternative for non-

4.3 Region Smoothing

the network connectivity). The assigned frequefidgr this curve photorealistic rendering, encompassing: a new visual style using
is the maximum of the two adjoining region frequencies; this leads bold edges and large regions of constant color; a new approach to
to use of a Gaussian kernel with= & (when filtering with this visual form for rendering transformations on images, a hierarchi-

cal structure that relates the meaningful parts in an image across
scales; and new techniques for interaction, based on eye-tracking
and models of perception.

Future research can bring improvements to any of these areas.
For example, the segmenter could be enhanced to use a model of
shading. This would reduce the patchiness seen in smoothly shaded
4.4 Drawing lines regions (skin, in particular). More difficult, however, is the ap-
propriate placement of boundaries to indicate shading changes or
gradations. The treatment of texture offers a stylistic challenge.
Currently, simple textures are simply smoothed away (such as the
stucco wall in the opening figure). Complex textures are problem-
atic (especially when foreshortened), such as the pattern of win-
dows in Figure 8. In this case, the segmenter lumps together all

of the small windows into a single region. While our current seg-
f< ig[]fl_)é] [G' M(e)- a(ti)] ®) menter does not model texture, other computer vision research has
looked at grouping regions into textured objects. But how can a
The eccentricityg with respect td; is determined only by the clos-  system effectively convey an inferred texture in an abstracted way?
est point on the line to the fixation point (and does not use regions  The segmentation could be enriched with additional aspects of
in N). Lines shorter thaty,, are not drawn. To filter out spurious  visual form as well. Natural possibilities include the grouping of
lines shorter than .8l ;. which can appear in textured areas, we parts into coherent objects, or the status of contours as results of
additionally require them to lie along a frontier region boundary. occlusion, shadow or markings. For animation, algorithms for the

Lines are smoothed in the same manner as the region boundaryvisual tracking of image features and the segmentation of moving

curves, but instead use a fixed-size filter=€ 3). This preserves objects will be required to achieve consistency of elements over

kernel, components with frequendymostly pass through, while
those at 4 are essentially removed). While it is possible for curves
to cross each other using the filter, this is unlikely, and is unnotice-
able if regions are drawn in coarse-to-fine order.

With the regions drawn, the lines are placed on top. Lines are drawn
using a model of visual acuity; this model ignores contrast, and
instead uses the maximum perceivable frequendg of50 cycles

per degree. Computing the frequencyfas 71r for a line of length

I, the acuity model can predict it was visible if:
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(b)
Figure 5: (a) A source image (1024688) and fixations gathered by the eye-tracker; (b) the resulting line draegng.& 0.1, 1, = 40).
(b)
Figure 6: (a) A source image (1024688) and fixations gathered by the eye-tracker; (b) the resulting line drawagng & 0.05,1,,;, = 40);

(c) region boundaries before and after smoothing.

(b)

Figure 7: Comparison with and without eye-tracking data for thex7888 image in (a). The drawing in (b) uses fixation data, and important
details (as seen by the user) are retairggl{, ;.= 40°). The drawings in (c) instead use a constant eccentricitpi3op, 12 on the bottom

image) across the entire image so that no meaningful abstraction is performed. (&Jl\ise 0.14,1 ;. = 15.)
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Figure 8: A photograph with a difficult texture, and its correspond-
ing line drawing €., .= 0.175,1 ;, = 15).

cale min

time. But how can this be related to the patterns of fixations gath-

ered across a series of images (whether they are viewed frame-by-KO

frame or at full speed)?

Finally, more sophisticated models of visual perception can sup-
port more accurate decisions of what simplifications are possible,
and suggest more discriminating transformations on regions. In-
deed, by providing a controlled means for adapting imagery based
on a perceptual model, our system may itself serve as a tool for
formulating and testing such perceptual models.
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