Semiconductor Nanowires I: Growth, assembly, non-electronic applications

11/03/2005

VLS growth of semiconductor nanowirs

Vapor-Liquid-Solid (VLS) growth process •Decomposition of precursors (vapor phase) via catalyst particles

•Liquid alloy droplet formation above the Eutectic temperature

- •Supersaturation of the liquid droplet resulting in solid phase growth
- •Diameter controlled by the catalyst particle size

VLS growth of semiconductor nanowirs

VLS growth of semiconductor nanowirs

Growth direction at different diameters

Growth of compound nanowires with laser-assisted catalytic growth

Target: solid compound material + Au mixture

L+S phase above certain temperature

Growth of compound nanowires via MOCVD

TMG+NH3

Tapering due to direct radial deposition

Core/shell radial heterostructures

Core/shell radial heterostructures

Gudiksen, Nature 415, 617-620 (2002).

GaP: indirect bandgap GaAs: direct bandgap

Nanowire axial heterostructures

Gudiksen, Nature 415, 617-620 (2002).

Thermal evaporation and self-assembly formation of nanowires

Thermal evaporation of ZnO Nanowires and nanorings collected at cold finger Formation of nanowires, nanorings due to self-assembly

Solution based nanowire growth

Solution phase decomposition of bimetallic precursors

Urban, Adv. Mater. **15**, 423 (2003)

Electroplating with polymer or anodized alumina membranes

Separation of growth and device fabrication processes

d ~ 10 nm L ~ 20 μm

By separating the high temperature synthesis from assembly and device fabrication a diverse set of materials can be integrated together on a common platform.

•Wire surface functionalized by antibody (ab-A)

•Virus A specifically binds to ab-A

•Conductance of the nanowire changes due to the local gating effect.

Nanowire biosensor

F. Patolsky, PNAS 101, 14017 (2004).

Single virus binding signals

Nanowire biosensor

F. Patolsky, PNAS 101, 14017 (2004).

selectivity

Multiplexing detection

Nanowire optics

Duan, Nature 421, 241 (2003)

•ZnS nanowire as optical waveguide

•Fabry-Perot interference due to reflection at the two ends, discrete cavity modes

•End emission vs. body emission

Lasing via optical carrier injection

•Amplified spontaneous emission in the ZnS nanowire medium (superlinear vs. pump power)

•Lasing occurs soon above threshold

Core/multishell nanowire LED

Band gap of the InGaN quantum well can be tuned by In/Ga ratio

Qian, Nano Lett. ASAP, (2005)

Nanowire (nanoribbon) waveguide

Law, Science, 305, 1269, (2004)

mm long SnO₂ nanoribbon waveguides

Assembly of nanowires via flow alignment

Analogous to flowing logs of wood down the river

Assembly of nanowires via Langmuir-Blodgett technique

Whang, Nano Lett. 3, 1255 (2003).

•Nanowires forming a film at the air/liquid interface

•Squeezing the film by the two impedances causes the wires to align with the impedance

•Large scale assembly possible

Assembly of nanowires via Langmuir-Blodgett technique, Nano Lett. 3, 1255 (2003).

Control the spacing by controlling pressure between the impedances

Assembly of nanowires via Langmuir-Blodgett technique

Whang, Nano Lett. **3**, 1255 (2003).

Pattern formation by selectively removing excess wires

Assembly of nanowires via Langmuir-Blodgett technique

Whang, Nano Lett. 3, 951 (2003).

Spacing can also be controlled via a sacrificial shell layer

Assembly and integration

Large scale application may be realized without registration

Si nanowires directly bridging contacts

He, Adv. Mater. 17, 2098 (2005)

Si nanowires can be epitaxially grown on Si <111> surface

Si nanowires directly bridging contacts

Branched nanowires

GaP nanowires via VLS and MOCVD

Fabrication of single crystalline metallic nanowires from SiNWs

- •Single Crystal
- •NiSi 1:1 phase confirmed by EDS
- •Diameter control inherited from Si nanowire

Pure NiSi Nanowires: Transport Measurement

•Metallic

•Low resistivity: 9.5 $\mu\Omega$ ·cm

•Diffusive transport, electron phonon scattering dominates

•Very High J_{max} : 3×10^8 A/cm² due to elimination of grain boundaries (electromigration)

Compare: Metallic Carbon Nanotube: $J_{max}=1\times10^9 \text{ A/cm}^2$

NiSi/Si Nanowire Heterostructure

Integrated NiSi/Si/NiSi FET Devices

Nanowires as temperatures

Fan, J. Am. Chem. Soc. 125, 5254, (2003)

Si as template

From SiO_2/Si core/shell structure, resulting in SiO_2 nanotubes

Single-crystalline Si naotubes

Timko, et al, unpublished

Ge core as template Si tubes obtained from the Ge/Si core/shell nanowires

Single-crystalline Si naotubes

Timko, et al, unpublished

Diameter and Wall Thickness Control

Variations of Si Nanotubes

Si nanotube networks

Si cones

Nanofluidics with Si nanotubes

Timko, et al, unpublished

Nanoparticles inserted inside Si nanotubes

Trapped gas bubbles

Nanofluidics with Si nanotubes

Timko, et al, unpublished

Electro-osmosis

Fluidic properties at the nanoscaleDNA stretchingBio-sensing