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Jin, Nano Lett. 4, 915 (2004) 

Si naowire devices

μ~300cm2/Vs
uniform behavior



-0.3 0.0 0.3

-800

0

800

I (
nA

)

V

From Up down: 
T=300K, 280K, 260K, ...20K, 10K

0 50 100 150 200 250

Shottky barrier formation at the contacts
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•Ohmic-like contact at RT because of thermally assisted tunneling 
and thermal emission

•Shottky barrier is obvious at low T. 

•Typical contact resistance ~ 100KΩ-1MΩ per wire
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Ahn, Nano Lett, 5, 1367 (2005)

Measuring the Schottky barrier with photocurrent



Ahn, Nano Lett, 5, 1367 (2005)

Measuring the Schottky barrier with photocurrent

φb~0.57eV



Ahn, Nano Lett, 5, 1367 (2005)

Measuring the potential inside the channel with photocurrent



Schottky barrier formation at the source/drain contacts

Zhong, Nano Lett, 5, 1143 (2005)

Schottky barriers as tunnel barriers
Quantum dot formed between the source/drain electrodes



Zhong, Nano Lett, 5, 1143 (2005)

Schottky barrier formation at the source/drain contacts
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•Clear plateau formation at ~0.65G0
•First subband occupied (1-D)

Vg from -10V 
to +10V, step 
1V
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Top gate, multiple 1D channels
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•Little temperature dependence

•Reduction of phonon scattering

•Room temperature ballistic devices

Vg (V)
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•3X improvements achieved using better high-k dielectrics (HfO2)
•Gm=3.3 mS/μm 
•Ion=5 mA/μm
•CV/I=3.8ps with Vdd=1V

Top gated Ge/Si nanowire devices, room T



Benchmarking of nanoFETs

Chau, IEEE Trans Nano, 4, 1536 (2005)



CV/I scaling of Ge/Si nanowires

•CV/I data points picked at Ion/Ioff=100
•Better than state-of-the-art p-Si devices
•Sharper slope obtained, due to suppression of mobility degradation. 



Ambipolar suppression

•Metal contacts results in pronounced ambipolar behavior.
•Ungated region as local contacts instead.



•Both depletion mode (VT>0) and enhancement mode (VT<0) devices can be 
obtained via selection of top gate materials.
•High uniformity

Threshold engineering



Ring oscillators:
• Excellent circuit for demonstrating 
reliable integration
• Excellent circuit for demonstrating 
gain/driving capabilities
• Excellent circuit for demonstrating 
high freq performance/limitations
• “An oscillator of some sort is an 
essential ingredient in electronics”

Nanowire ring oscillators 

Vin

Vout

nanowire inverter

Si nanowire inverter response



Deposit wires by flow-alignment
and pattern via photolithography

Uniformity critical in these 
multiple wire devices

Nanowire ring oscillators 
Friedman, Nature 434, 1085 (2005). 



Friedman, Nature 434, 1085 (2005). 
Si nanowire ring oscillators 

f>4MHz on oxidized Si 
substrate

f>10MHz on glass 
substrate
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Ge/Si nanowire ring oscillators

• Initial attempt on Si substrate already yields f~20MHz
• 3-4 times faster on insulating substrate, eg, glass
• Further optimization

f~20MHz

Inverter response Ring oscillator response



McAlpine, Nano Lett. 3, 1531 (2003)

•Separation of high 
temperature material growth 
and low temperature device 
fabrication processes.

•High performance electronic 
and photonic devices on 
plastics

Nanowire devices on flexible substrates



McAlpine, Nano Lett. 3, 1531 (2003)

μ~200cm2/Vs, 2-3 orders 
higher than amorphous Si 
and organic semiconductors

Nanowire devices on flexible substrates



Diameter dependence of the threshold

Thelander, APL, 83, 2052 (2003)

InAs nanowires and axial heterostructures

InAs wire, n-type

InAs wires with InP tunnel barriers
Controlled growth via the CBE method

Bjork, Nano Lett 4, 1621 (2004) 

Samuelson group, Lund Univ



Axial heterostructures, controlled growth of tunnel barriers Bjork, Nano Lett 4, 1621 (2004) 

Well defined SET behavior

Thelander, APL, 83, 2052 (2003)



Few charge quantum dot obtained by reducing the dot size 
(separation of the InP barriers)

Bjork, Nano Lett 4, 1621 (2004) InAs nanowire quantum dots



Nanowire based single electron memory

•Individual electrons 
added/removed via tunneling 
through the InP barriers

•Au nanoparticle as the charge 
storage node

•A second nanowire SET 
detects number of charges on 
the Au nanoparticle

Thelander, Nano Lett. 5, 635 (2005)



Nanowire based single electron memory

Thelander, Nano Lett. 5, 635 (2005)

T=4.2KN: number of electrons on the Au particle
M: number of electrons on the SET



Decoder: bridging the nanoscales wires with micro scale wires

Coding achieved via modulation doping (gatable regions vs. ungatable regions)
2N nanowires can be addressed by N microwires with perfect registry

DeHon, IEEE Trans Nano, 2, 165 (2003)

Nanowire device arrays



Stochastic decoding

Unique addressing of all N nanowires can be obtained via stochastic decoding 
with large coding spaces without registry

DeHon, IEEE Trans Nano, 2, 165 (2003)



Coding via modulation doping of Si nanowires

Yang, Science, 2005



Cleland, APL, 69, 2653 (1996)
Mechanical resonators

Application: passive RF filters, oscillators for wireless 
communications. (eg, prof. Nguyen’s group).

Fundamental interest (flexural modes): 
hf~50 mK for f=1GHz, quantum mechanical system.
hf~4μeV, comparable to energy scales of electrical 
systems. Entangled mechanical/electrical systems. 



Magnetomotive actuation
Cleland, APL, 69, 2653 (1996)

In plane magnetic field.
AC current creats Lorentz driving force.

•Electromotive (AC signals applied to coupling electrodes, driven by electric forces)
•Piezoelectric forces (AC bias causes mechanical driving force)

Other actuation methods



f~1GHz, Q~500 Huang, Nature 421, 496 (2003).

GHz resonators

Doubly 
clamped SiC
beam



•For samples produced via the etching process, surface 
induced losses dominates the quality factor
•Such loss may be avoided in devices produced by 
single-crystalline nanowires.
•Piezoelectric actuation possible with (AlN) nanowires
without magnetic fields and 3rd electrode 

f~1GHz for a resonator 
based on Si nanowires
with d=20nm and 
l=400nm.

Carr, APL, 75, 920 (1999)

Surface roughness induced losses



Comparing nanowires and nanotubes

Nanotubes:

Pros:
truly 1D system
interesting properties (orbital degeneracy, electron-hole symmetry)
Small diameter (~1-2nm)
Large mean free path (~1 μm at low bias, 30 nm at high bias)
High mobility (~3000*d) (Zhou, PRL, 95, 146805 (2005)

Cons:
Little control over metallic/semiconducting, chirality
Hard to functionalize.

Nanowires:
Pros:
Uniformity (large scale application possible, devices on plastic substrates)
Flexible (core/shell heterostructures, axial heterostructures)
Heterostructure design greatly enhances mean free path and mobility
Vertical FET with conformal gating?
Can be easily functionalized for alignment and biosensing purposes
Other applications (photonics, solar cells and gas sensing due to large surface area).
High freq, high Q resonators?

Cons:
Larger size (~10-20 nm, but still small compared to top-down approach)
Transport diffusive in most cases (may still be better than bulk materials due to confinement 
and smoother surface),


