Capacitance Standard based on Counting Electrons

By: Zeinab Mousavi Stephanie Teich-McGoldrick Jaspreet Wadhwa

SI Electrical Base Units

Electrical Units: m, s, kg, A

- Fundamental Units: same for all times and places second: time taken by 9,192,631,770 cycles of radiation that comes from electrons moving between two energy levels of the caesium-133 atom
 meter: wavelength of radiation from a transition in KR
 - atom
- Non-fundamental Units: not constant kilogram: mass of a metal cylinder kept in Paris

Ampere: current that when flowing in straight parallel wires of infinite length and negligible cross section, separated by a distance of one meter in free space, produces a force between the wires of 0.2 μ Newton per meter of length (1960)

volt: based on electrochemical re-actions within chemical cells

ohm: based on measuring a wire-wound standard resistor against the impedance of a capacitor at known frequency, drift range of -0.7 to 0.7μΩ/year need higher-reproducibility fundamental standards based on quantum phenomena

1990 Standards

Quantum Hall Effect → resistance standard
 Klaus von Klitzing, 1985 Nobel Prize
 2D Hall Effect, Low Temp
 resistance varies stepwise with magnetic field
 step size does not depend on material properties
 step size = h/(i*e²), i = step number 1 Klitzing: hall resistance at 4th step

1990 Standards

• Josephson Effect \rightarrow voltage standard

Brian Josephson, 1962 two superconductors separated by thin insulator Cooper pairs tunnel through junction applied DC voltage \rightarrow oscillation of frequency $f_j = \frac{2 e \Delta V}{h}$ 1 Volt: voltage required to produce 483,597.9 GHz

Calculable Capacitor

Parallel Plate Formula: $C = \frac{\varepsilon_0 A}{d}$ neglects fringing fields effect Calculable Capacitor:

Special geometry rejects effects of fringing fields capacitance depends on only one length

$$\frac{\Delta C}{\Delta L} = \varepsilon_0 Ln(\frac{2}{\pi})$$

- ✓ no uncertainty in relationship
- ✓ measurement of displacement
- ✓ can determine impedance

(Zimmerman, 1997)

Electron Counting Capacitance Standard (ECCS)

Capacitance: transfer of charge between two conductors creates potential difference $C = \frac{Q}{A_{N}}$

- Single Electron Transistor (SET) : detect single electron $C = \frac{Ne}{\Delta V}$
- → Capacitance standard based on quantization of charge Use small current to charge a small capacitor to a large voltage in a short time

Three components of SET Capacitance Standard:

- 1. electrometer
- 2. 7-junction electron pump
- 3. cryogenic vacuum-gap capacitor

SET Device

Metal tunnel junction capacitance C, current I(V), bias volt V tunneling $\rightarrow E_{change} = eQ/C - e^2/2C$ R_t: tunneling resistance

(Fulton, 1987)

If R_t >>h/e² and kT<<e²/2C \rightarrow Coulomb Blockade no tunneling for |V|<e/2C

C ≈ 0.1fF, $e^2/2C \approx 10K$, Temp ≈ 0.1K (-460F) SET effects dominate thermal fluctuation

SET Electrometer

two tunnel junctions:

each has capacitance C $_{(Williams, 1992)}$ electrode *a* : island electrically isolated from circuit Input: potential U coupled to island *a* thru C₀

lower potential barrier across junction (through U)

- \rightarrow current passes through
- \rightarrow device current linearly proportional to U

Accuracy of electron counting using a 7junction electron pump

The electron pump

- Based on Columbic tunneling
- A series of metal islands separated by tunnel junctions
- A gate electrode coupled capacitively is and

The electron pump

- Changing the gate voltages changes the Coulomb blockade at each junction
- Allows individual electrons to be sent down the chain of islands
- Current -- 1pA

Important as a standard for Capacitance

- A way to count e-
- As a capacitance standard
 - Use electron pump to put e- onto Cyro Cap
 - Stop pumping e- (hold mode)
 - Compare C_{CRYO} with another capacitor at room temp
 - Determine the value of conventional room temp capacitor in terms of e-
 - Room temp capacitor can now be used as a basis for calibrations

Cryogenic Capacitor

Chip with SET switch pump Zimmerman et al. Measuremens Standards and Technology, 2003

Important as a standard for Capacitance

- Requirements
 - -Ability to put 10⁸ e- on 1pF capacitor
 - -Uncertainty +-1 e- (10 ppb)
 - Small leakage current when off

Design

- Minimize error
- Maximize Coulomb Blockade
 - Small junctions to reduce junction capacitance
 - -Small islands to reduce selfcapacitance
 - -Low k constant substrate to reduce stray capacitance
 - -Minimize cross-capacitance

Fabrication

- Two-angle evaporation of Al
- PMMA bi-layer mask patterned with EBL

Circuit Design

- Pumps connected to external island
- Electrometer based on tunnel junction)
- Switch
 - Closed to obtain I/V curve of pump
 - Open to detect pumped e-

Circuit Design cont.

- Plot of voltage on external island (V_P) vs time
- 1 erepeatedly pumped on/off island
- Jump of 7.6eV = 1e- on/off

Accuracy of electron

pump

- Pumping 1 e- on/off external island
- Measure Vp vs. time
- Pumping rate faster than can measure

Accuracy of electron pump • Pumping rate = 5.05MHz

- Avg error rate lerror/13s
- Error per pumped e-, 15ppb

Leakage Rate

- Hold mode (e- pumped onto islands and gate pulses turned off)
- Each jump in figure is leleaking through the pump

Leakage Rate

- Hold mode (e- pumped onto islands and gate pulses turned off)
- Each jump in figure is le-(b) $(\int_{-10}^{10} 0$ 1000 2000 3000 Time (s)

Pumping speed errors

- $t_p = pump time$
- $t_w = wait time$
- $1/(t_p + t_w) =$ overall pump time

Pumping speed errors

• Time each 10^{0} junction is 0.1Error Rate (1/s) activated 10^{-2} Error per electron must be long 10^{-4} compared to 3 Pump Rate (MHz) RC to avoid 10^{-6} errors due to missed 10^{-8} tunneling at 100 300 0 200 400 590 t_p (ns) events small t_{p} Constant at • $\mathcal{E}_{th} = exp(-at_P/RC)$ large t_p

Pumping speed errors

- Inset graph
- Error rate
 as pump rate
 is varied
 holding t_p
 constant and
 varying t_W
- Overall pump rate can be adjusted
 without

Temperature dependence

- At high T both the error and leakage rate increase exponentially
- At low temp both are independent of ${\rm T}_{\rm MC}$
- At low temp a tempindependent error mechanism dominates
- Photon-assisted cotunneling
 - Noise from the slow relaxation of charges trapped in

$$\varepsilon_{th} = b * \exp(-\Delta E_P / k_B T)$$

$$\Gamma_{th} = \frac{d}{RC} \exp(-\Delta E_h / k_B T)$$

Pump Phase: charge capacitor C_{cryo} electrometer: monitor potential *a* electron pump: current source C_{cryo} : standard capacitor

- charge C_{cryo} with N electrons
- measure avg. V across C_{cryo}
- determine C_{cryo}

(Zimmerman, 2003)

Why null detector/feedback?

To avoid errors, voltage Charge from p across pump must be kept zero across C_{cryo}

(Zimmerman, 1997)

Charge from pump appears across C_{cryo}, not C_{strand}

Pump at 6.2 MHz for 10s, $V_{feed} = 10$ I=e*f \rightarrow I=9.9x10⁻¹³ (A) Q=I*t \rightarrow Q \approx 10x10⁻¹² (C) C=Q/V \rightarrow C \approx 1p (F)

In practice, repeat 10-100 times

Pump $\approx 10^8$ electrons, V_{feed} = 10 C=Ne/< V_{feed} > \rightarrow C \approx 1.8pF

Bridge Phase: Compare with Cstand at room temp

- grounded shield V₁, V₂ affect detector through C_{cryo}, C_{stand}
- balanced bridge: no Qb at balance point
- adjust V₁, V₂ to balance bridge: V₁*C_{cryo}=V₂*C_{stand}

In practice, single source and voltage divider

Capacitance Requirements

- Pump electrons onto cap
 - stable
 - low loss
- Measure voltage across cap for several seconds
 - hold number of electrons fixed
 - leakage resistance of $10^{22} \Omega$
- Compare to standard cap at room temp & audio freq
 - stable for minutes or hours
 - low frequency dependence

Cryogenic cap: no freq & volt dependence

parallel resistance $10^{21} \,\Omega$

Stray Capacitance

low temp, metal enclosure, spaced closely → lower C_{stray} perfect null detector: V_{feed}=Q_p/C_{cryo}

Line Impedance

R_{filt}: discrete filters used to shield SET from hi-freq noise

- Rline: disturbed line resistance
- Line impedance \rightarrow uncertainties
 - applied volt to C_{cryo} and C_{stand} different than V_1 , V_2

 ω =10⁴ Hz, uncertainty <10⁻⁸

- \rightarrow R_{filt} < 1 Ω , R_{line} < 0.01 Ω
- → use filters special for SET (refer to Vion, 1994)

Kin, left-hand loop.

Side "Line Japedance" Notes
top loops:

$$I = \frac{Volt, 1}{24Crops} = \frac{Volt, Volt, operatory ope$$

for resistance in the Une to the null detector;

Results

Relative uncertainty of 10⁻⁶

prominent uncertainty source: charge offset noise floor of detector due to its moving charged defects

chip with SET pump and SETT electrometer

cryogenic capacitor

(Zimmerman, 2003)

(Zimmerman, 1999)

Challenges

- reduce frequency dependence of cryogenic capacitor
- reduce input noise of electrometer
- reduce filter impedance
- reduce the probability of the tunneling induced by out of equilibrium photons from the external circuitry
 - reduce electromagnetic noise
- run thorough analyses of the system including all uncertainties, noise sources, parasitic & co-tunneling effects

Calculation of Capacitance

Apparatus

- In order to accurately define capacitance, we need the following:
 - An accurate pumping mechanism (7 Junction electron pump)
 - A close to ideal Cryogenic Capacitor
 - An accurate Electrometer

Keller, 2000

Procedure

- The first step of the process is to pump a known quantity (10⁸) of electrons on to the cryogenic capacitor
- The capacitance can be calculated with the formula:

Definition of Capacitance

- Capacitance can be defined by the formula: $C_{\text{SET}}^{(\text{SI})} = \frac{Ne}{\Lambda V^{(\text{SI})}} \qquad C_{\text{SET}}^{(1990)} = \frac{Ne}{\Lambda V^{(1990)}}$
- Why are there 2 definitions?
 The unit for Voltage
- Because of the 2 different standards, there are 2 different methods of defining capacitance

Keller, 2000

Each standard has different uncertainties

Standards

- The SI unit system is the authoritative standard for defining units
- The experiments used to define SI units can be cumbersome and are repeated only when needed
- A 1990 agreement created a new set of units (denoted by a 90 in subscript) to improve consistency
- The new units (Voltage, Resistance) have a lot less uncertainty than the SI system units

Why is uncertainty important?

- The difference in values between the SI and the Subscript-90 units can give 2 different theoretical values
- Example:
 - $\begin{array}{ll} \mbox{ For N = 10^8 and } \{\Delta V\}_{90} = 10 \mbox{ the values of capacitance} \\ are: & C_{\rm SET}^{\rm (SI)} = 1.602 \mbox{ 176 } 456(6) \mbox{ pF} \\ & C_{\rm SET}^{\rm (1990)} = 1.602 \mbox{ 176 } 491 \mbox{ 6... pF}_{90} \end{array} \begin{array}{l} \mbox{ Keller (2000)} \end{array}$
- Comparison between the two values gives us a relative difference of 2.2 X 10⁻⁸

Calculating Capacitance

- The investigators chose to use the subscript-90 units because of the lower uncertainty and consistency
- The formula then becomes: $C = \frac{Ne}{\{\langle \Delta V \rangle\}_{SI} V}$
- Initial estimates of uncertainty suggest that the combined uncertainty of the result will be no less that 1ppm

Actual Uncertainty

 To calculate the actual uncertainty, we need to define e in terms of more fundamental units

 $e = (4\alpha/\mu_0 c)(1/K_{\rm J})$

 K_J is a fundamental constant that is used in the definition of the voltage (Josephson junction)

$$K_{\rm J} = 2e/h$$
 Keller, et al (1999)

Actual Uncertainty cont.

• Substituting for e in the formula, we get:

$$C = \frac{Ne}{\{\langle \Delta V \rangle\}_{\rm SI} \rm V} = \frac{N(4\alpha/\mu_0 c)(1/K_{\rm J})}{\{\langle \Delta V \rangle\}_{90} \rm V_{90}} = \frac{N(4\alpha/\mu_0 c)}{\{\langle \Delta V \rangle\}_{90} \rm K_{\rm J-90} \rm V}$$

• Where:

 $K_{J-90} \equiv 483\ 597.9\ \text{GHz/V}$ $\mu_0 \equiv 4\pi \times 10^{-7}\ \text{N/A}^2$

• And α = 7.29735308 X 10⁻³

Uncertainty cont.

- Based on these fundamental values, the uncertainty of the value of C can be reduced to approx. 0.01 ppm
- This value depends heavily on low uncertainties in the values of N and {<V>}₉₀
- Even though sub-90 values are used, the expression is expressed in SI form

Experimental Results

 Using their 7 junction electron pump, the investigators were able to get the following results:

Comparing to the existing standard

 The following graph shows the comparison between the electron counting (EC) method and NIST primary capacitance standard:

• The results of the experiment show that the EC method gives a more certain value

Applications

- An accurate Capacitance standard can be very useful in a laboratory situation
- The apparatus used by the investigators allows them to tune a capacitor at room temperature (using an AC bridge)

Areas for further progress

- Although the results of this experiment can be used as a new standard for capacitance, there is some room for improvement
- A better cryogenic capacitor and lower uncertainties in the fundamental constants used in the calculations are needed to improve on this standard

References

- BIPM Com. Cons. Electricite **17**, E123, E!27 (1986)
- Fulton T. A., D. A. Dolan Phys. Rev. Lett. 59, 109 (1987).
- Keller M. W., A. L. Eichenberger, J. M. Martinis, N. M. Zimmerman, *Science* **285**, 1706 (1999).
- Vion, D. et al., J. Appl. Phys., 77, 2519 (1995).
- Williams E. R., R. N. Ghosh, J. M. Martinis, *J. Res. Natl. Inst. Stand. Technol.* **97**, 299 (1992).
- Zimmerman N. M., *ibid.* **45**, 841 (1996).
- Zimmerman N. M., Am. J. Phys. 66, 324 (1996).
- Zimmerman N. M., J.L. Cobb, A. F. Clark, *ibid.* 46, 294 (1997).
- Zimmerman N. M., M. W. Keller, *Meas. Sci. Technol.* **14** 1237 (2003).