Capacitance Standard based on Counting Electrons

By:
Zeinab Mousavi
Stephanie Teich-McGoldrick
Jaspreet Wadhwa
SI Electrical Base Units

Electrical Units: m, s, kg, A

– Fundamental Units: same for all times and places

 second: time taken by 9,192,631,770 cycles of radiation that comes from electrons moving between two energy levels of the caesium-133 atom

 meter: wavelength of radiation from a transition in KR atom

– Non-fundamental Units: not constant

 kilogram: mass of a metal cylinder kept in Paris
Ampere: current that when flowing in straight parallel wires of infinite length and negligible cross section, separated by a distance of one meter in free space, produces a force between the wires of 0.2 µ Newton per meter of length (1960)

volt: based on electrochemical reactions within chemical cells

ohm: based on measuring a wire-wound standard resistor against the impedance of a capacitor at known frequency, drift range of -0.7 to 0.7µΩ/year

need higher-reproducibility fundamental standards based on quantum phenomena
1990 Standards

• Quantum Hall Effect \rightarrow resistance standard

Klaus von Klitzing, 1985 Nobel Prize

2D Hall Effect, Low Temp
resistance varies stepwise with magnetic field
step size does not depend on material properties
step size $= h/(i*e^2)$, $i =$ step number

1 Klitzing: hall resistance at 4th step

(Kosmos, 1986)
1990 Standards

• **Josephson Effect → voltage standard**

 Brian Josephson, 1962
 two superconductors separated by thin insulator
 Cooper pairs tunnel through junction
 applied DC voltage → oscillation of frequency
 1 Volt: voltage required to produce 483,597.9 GHz

\[
 f_j = \frac{2 e \Delta V}{h}
\]
Calculable Capacitor

Parallel Plate Formula: \(C = \frac{\varepsilon_0 A}{d} \) neglects fringing fields effect

Calculable Capacitor:
Special geometry rejects effects of fringing fields capacitance depends on only one length

\[
\frac{\Delta C}{\Delta L} = \varepsilon_0 \ln\left(\frac{2}{\pi}\right)
\]

✓ no uncertainty in relationship
✓ measurement of displacement
✓ can determine impedance

(Zimmerman, 1997)
Electron Counting Capacitance Standard (ECCS)

Capacitance: transfer of charge between two conductors creates potential difference \[C = \frac{Q}{\Delta V} \]

- Single Electron Transistor (SET): detect single electron \[C = \frac{Ne}{\Delta V} \]

→ Capacitance standard based on quantization of charge
Use small current to charge a small capacitor to a large voltage in a short time

Three components of SET Capacitance Standard:
1. electrometer
2. 7-junction electron pump
3. cryogenic vacuum-gap capacitor
SET Device

Metal tunnel junction
capacitance C, current $I(V)$, bias volt V
tunneling $\Rightarrow E_{\text{change}} = eQ/C - e^2/2C$
R_t: tunneling resistance

\[R_t \gg h/e^2 \quad \text{and} \quad kT \ll e^2/2C \quad \Rightarrow \quad \text{Coulomb Blockade} \]
no tunneling for $|V|<e/2C$

$C \approx 0.1\text{fF}$, $e^2/2C \approx 10\text{K}$, Temp $\approx 0.1\text{K}$ (-460F)
SET effects dominate thermal fluctuation

(Fulton, 1987)
SET Electrometer

Two tunnel junctions:
each has capacitance C
electrode a: island electrically isolated from circuit
Input: potential U coupled to island a thru C_0

Lower potential barrier across junction (through U)
\rightarrow current passes through
\rightarrow device current linearly proportional to U

(Williams, 1992)
Accuracy of electron counting using a 7-junction electron pump
The electron pump

- Based on Coulombic tunneling
- A series of metal islands separated by tunnel junctions
- A gate electrode coupled capacitively to each island
The electron pump

- Changing the gate voltages changes the Coulomb blockade at each junction
- Allows individual electrons to be sent down the chain of islands
- Current -- 1pA
Important as a standard for Capacitance

- A way to count e-
- As a capacitance standard
 - Use electron pump to put e- onto Cyro Cap
 - Stop pumping e- (hold mode)
 - Compare C_{CRYO} with another capacitor at room temp
 - Determine the value of conventional room temp capacitor in terms of e-
 - Room temp capacitor can now be used as a basis for calibrations

Zimmerman et al. Measurement Standards and Technology, 2003
Important as a standard for Capacitance

- Requirements
 - Ability to put 10^8 e− on 1pF capacitor
 - Uncertainty ± 1 e− (10 ppb)
 - Small leakage current when off
Design

• Minimize error
• Maximize Coulomb Blockade
 - Small junctions to reduce junction capacitance
 - Small islands to reduce self-capacitance
 - Low k constant substrate to reduce stray capacitance
 - Minimize cross-capacitance
Fabrication

- Two-angle evaporation of Al
- PMMA bi-layer mask patterned with EBL
Circuit Design

- Pumps connected to external island
- Electrometer (based on tunnel junction)
- Switch
 - Closed to obtain I/V curve of pump
 - Open to detect pumped e-

All components except the switch were fabricated on a single chip
Circuit Design cont.

- Plot of voltage on external island (V_P) vs time
- 1 e- repeatedly pumped on/off island
- Jump of $7.6eV = 1e-$ on/off
Accuracy of electron pump

- Pumping 1 e- on/off external island
- Measure V_p vs. time
- Pumping rate faster than can measure
Accuracy of electron pump

- Pumping rate = 5.05 MHz
- Avg error rate 1 error/13s
- Error per pumped e-, 15 ppb
Leakage Rate

- Hold mode (e- pumped onto islands and gate pulses turned off)
- Each jump in figure is 1e- leaking through the pump
Leakage Rate

- Hold mode (e- pumped onto islands and gate pulses turned off)
- Each jump in figure is 1e- leaking through the pump

Avg. hold time 600s
Pumping speed errors

- $t_P = \text{pump time}$
- $t_W = \text{wait time}$
- $\frac{1}{(t_P + t_W)} = \text{overall pump time}$
Pumping speed errors

- Time each junction is activated must be long compared to RC to avoid errors due to missed tunneling events.
 Increases at small t_p
 Decreases at large t_p

- $\varepsilon_{th} = \exp(-at_P/RC)$
Pumping speed errors

- Inset graph
- Error rate as pump rate is varied holding t_P constant and varying t_W
- Overall pump rate can be adjusted without
Temperature dependence

- At high T both the error and leakage rate increase exponentially.
- At low temp both are independent of T_{MC}.
- At low temp a temp-independent error mechanism dominates.
- Photon-assisted cotunneling
 - Noise from the slow relaxation of charges trapped in metastable states.

\[
\varepsilon_{th} = b \exp(-\Delta E_p / k_B T) \\
\Gamma_{th} = \frac{d}{RC} \exp(-\Delta E_h / k_B T)
\]
ECCS Operation

Pump Phase: charge capacitor C_{cryo}

electrometer: monitor potential a

electron pump: current source

C_{cryo}: standard capacitor

- charge C_{cryo} with N electrons
- measure avg. V across C_{cryo}
- determine C_{cryo}

(Zimmerman, 2003)
ECCS Operation

Why null detector/feedback?

To avoid errors, voltage across pump must be kept zero

Charge from pump appears across C_{cryo}, not C_{strand}

(Williams, 1992)

(Zimmerman, 1997)
ECCS Operation

Pump at 6.2 MHz for 10s, $V_{\text{feed}} = 10$

$I = e \cdot f \rightarrow I = 9.9 \times 10^{-13}$ (A)

$Q = I \cdot t \rightarrow Q \approx 10 \times 10^{-12}$ (C)

$C = Q / V \rightarrow C \approx 1 \text{pF}$ (F)

In practice, repeat 10-100 times

Pump $\approx 10^8$ electrons, $V_{\text{feed}} = 10$

$C = N_e / \langle V_{\text{feed}} \rangle \rightarrow C \approx 1.8 \text{pF}$

(Williams, 1992)

(Zimmerman, 1997)
ECCS Operation

Bridge Phase: Compare with C_{stand} at room temp

• grounded shield V_1, V_2 affect detector through C_{cryo}, C_{stand}
• balanced bridge: no Q_b at balance point
• adjust V_1, V_2 to balance bridge: $V_1*C_{\text{cryo}}=V_2*C_{\text{stand}}$

(Zimmerman, 1997)

In practice, single source and voltage divider
Capacitance Requirements

• Pump electrons onto cap
 – stable
 – low loss
• Measure voltage across cap for several seconds
 – hold number of electrons fixed
 – leakage resistance of $10^{22} \, \Omega$
• Compare to standard cap at room temp & audio freq
 – stable for minutes or hours
 – low frequency dependence
 Cryogenic cap: no freq & volt dependence
 parallel resistance $10^{21} \, \Omega$
Stray Capacitance

low temp, metal enclosure, spaced closely \(\rightarrow\) lower \(C_{stray}\)
perfect null detector: \(V_{feed} = \frac{Q_p}{C_{cryo}}\)

\[
V_{feed} - \frac{Q_P}{C_{cryo}} = \frac{C_{stray} + C_C + C_{cryo}}{C_{cryo}} \frac{\partial Q_{SET}}{C_C}
\]

\[
V_{feed} - \frac{Q_P}{C_{cryo}} = \frac{C'_{stray} + C_{cryo}}{C_{cryo}} \delta V_0
\]
Line Impedance

R_filt: discrete filters used to shield SET from hi-freq noise
R_line: disturbed line resistance
Line impedance \rightarrow uncertainties
 - applied volt to C_{cryo} and C_{stand} different than V_1, V_2
 \[\omega = 10^4 \text{ Hz}, \text{ uncertainty} < 10^{-8} \]
 \rightarrow R$_{\text{filt}} < 1\Omega$, R$_{\text{line}} < 0.01\Omega$
 \rightarrow use filters special for SET
 (refer to Vion, 1994)
\[Q_p = Q_{core} + Q_{stray} + Q_c \]
\[Q_{core} = Q_p - (Q_{stray} + Q_c) \]
\[\frac{Q_{core}}{C_{core}} = \frac{Q_p}{C_{core}} - \frac{(Q_{stray} + Q_c)}{C_{core}} \]
\[\frac{Q_{core}}{C_{core}} = \frac{Q_p}{C_{core}} - \frac{(Q_{stray} + Q_c) V_0}{C_{core}} \]

Notes:
- **Left-hand loop:**
 \[V_{eff} = \frac{Q_{core}}{C_{core}} - V_0 \]
 \[V_{eff} = \frac{Q_{core}}{C_{core}} - V_0 \]
 \[V_{eff} - \frac{Q_{core}}{C_{core}} = V_0 \]
 \[V_{eff} - \frac{Q_{core}}{C_{core}} = \frac{(Q_{stray} + Q_c) V_0}{C_{core}} \]
 \[\left| V_{eff} - \frac{Q_p}{C_{core}} \right| = \frac{(Q_{stray} + Q_c) V_0}{C_{core}} + \left| V_0 \right| \]

(minimal resolvable charge on island \(Q_{瑟} = 5.0 \times 10^{-5} \))

\[V_{eff} - \frac{Q_p}{C_{core}} \geq \frac{C_{stray} + C_{core} + C_{瑟}}{C_{core}} \]

Similar Analysis for Conventional Electromagnets:
\[\left| V_{eff} - \frac{Q_p}{C_{core}} \right| = \frac{C_{stray} + C_{core} + C_{瑟}}{C_{core}} \]

Notes:
- **Top loop:**
 \[I = \frac{V_{eff}}{E_{core}} = \frac{V_{eff}}{V_0 + \sigma C_{core}} \]
 \[\frac{V_0 - V_1}{R_{in1}} = \frac{C_{core}}{u_0} \cdot V_0 \]
 \[\frac{V_1 - V_{eff} + V_1}{V_{eff} + V_1} = \frac{R_{in1} C_{core}}{V_0} \]
 \[R_{in1} < 1 \Omega \Rightarrow \text{uncertainty} < 10^{-8} \]

Similarly, for lower loop:
\[\frac{V_0 - V_{eff} + V_1}{V_{eff} + V_1} = \frac{R_{in2} C_{core}}{V_0} \]
\[R_{in2} < 1 \Omega \Rightarrow \text{uncertainty} < 10^{-8} \]

For resistance in the \(U_1n \) to the null detector:
\[I = \frac{V_0}{E_{stray}} = V_0 \cdot \sigma C_{stray} \]
\[\Rightarrow \left| \frac{V_0 - V_0}{V_0} \right| = \frac{R_{in1} C_{stray}}{V_0} \]
\[R_{in1} < 1 \Omega \Rightarrow \text{uncertainty} < 10^{-8} \]
Results

Relative uncertainty of 10^{-6}

Prominent uncertainty source: charge offset noise floor of detector due to its moving charged defects

(Zimmerman, 1999)
Challenges

• reduce frequency dependence of cryogenic capacitor
• reduce input noise of electrometer
• reduce filter impedance
• reduce the probability of the tunneling induced by out of equilibrium photons from the external circuitry
 – reduce electromagnetic noise
• run thorough analyses of the system including all uncertainties, noise sources, parasitic & co-tunneling effects
Calculation of Capacitance
Apparatus

In order to accurately define capacitance, we need the following:

- An accurate pumping mechanism (7 Junction electron pump)
- A close to ideal Cryogenic Capacitor
- An accurate Electrometer

Keller, 2000
Procedure

• The first step of the process is to pump a known quantity (10^8) of electrons on to the cryogenic capacitor

• The capacitance can be calculated with the formula:

\[C = \frac{N_e}{\Delta V} \]

Definition of Capacitance

• Capacitance can be defined by the formula:

\[C_{SET}^{(\text{SI})} = \frac{N_e}{\Delta V^{(\text{SI})}} \quad C_{SET}^{(1990)} = \frac{N_e}{\Delta V^{(1990)}} \]

• Why are there 2 definitions?
 – The unit for Voltage
• Because of the 2 different standards, there are 2 different methods of defining capacitance
• Each standard has different uncertainties

Keller, 2000
Standards

• The SI unit system is the authoritative standard for defining units.
• The experiments used to define SI units can be cumbersome and are repeated only when needed.
• A 1990 agreement created a new set of units (denoted by a 90 in subscript) to improve consistency.
• The new units (Voltage, Resistance) have a lot less uncertainty than the SI system units.
Why is uncertainty important?

• The difference in values between the SI and the Subscript-90 units can give 2 different theoretical values

• Example:
 – For $N = 10^8$ and $\{\Delta V\}_90 = 10$ the values of capacitance are:

 $C^{\text{SI}}_{\text{SET}} = 1.602\,176\,456(6) \, \text{pF}$

 $C^{(1990)}_{\text{SET}} = 1.602\,176\,491\,6... \, \text{pF}_90$

• Comparison between the two values gives us a relative difference of 2.2×10^{-8}

Keller (2000)
Calculating Capacitance

• The investigators chose to use the subscript-90 units because of the lower uncertainty and consistency.

• The formula then becomes:

$$C = \frac{Ne}{\langle\Delta V\rangle_{st\,V}}$$

• Initial estimates of uncertainty suggest that the combined uncertainty of the result will be no less that 1ppm.
Actual Uncertainty

• To calculate the actual uncertainty, we need to define e in terms of more fundamental units

$$ e = \left(\frac{4\alpha}{\mu_0 c}\right)\left(1/K_J\right) $$

• K_J is a fundamental constant that is used in the definition of the voltage (Josephson junction)

$$ K_J = \frac{2e}{\hbar} $$

Actual Uncertainty cont.

- Substituting for e in the formula, we get:

$$C = \frac{N e}{\langle \Delta V \rangle_{SI} V} = \frac{N(4\alpha/\mu_0 c)(1/K_J)}{\langle \Delta V \rangle_{90} V_{90}} = \frac{N(4\alpha/\mu_0 c)}{\langle \Delta V \rangle_{90} K_{J,90} V}$$

- Where:

$$K_{J,90} \equiv 483\,597.9 \text{ GHz/V}$$

$$\mu_0 \equiv 4\pi \times 10^{-7} \text{ N/A}^2$$

- And $\alpha = 7.29735308 \times 10^{-3}$
Uncertainty cont.

• Based on these fundamental values, the uncertainty of the value of C can be reduced to approx. 0.01 ppm

• This value depends heavily on low uncertainties in the values of N and \{<V>\}_90

• Even though sub-90 values are used, the expression is expressed in SI form
Experimental Results

• Using their 7 junction electron pump, the investigators were able to get the following results:
Comparing to the existing standard

• The following graph shows the comparison between the electron counting (EC) method and NIST primary capacitance standard:

• The results of the experiment show that the EC method gives a more certain value
Applications

• An accurate Capacitance standard can be very useful in a laboratory situation

• The apparatus used by the investigators allows them to tune a capacitor at room temperature (using an AC bridge)
Areas for further progress

• Although the results of this experiment can be used as a new standard for capacitance, there is some room for improvement
• A better cryogenic capacitor and lower uncertainties in the fundamental constants used in the calculations are needed to improve on this standard
References