Carbon Nanotube Field Effect Transistors

By: Zeinab Mousavi Jaspreet Wadhwa Stephanie Teich-McGoldrick

New Devices

Device Scaling:

- → reaching fundamental physical limitations (tunneling, leakage current, hi power consumption)
- \rightarrow can not shrink devices much more
- \rightarrow same technologies but new material
 - Carbon Nanotubes (CNT)
 - Organic Molecules

Single-Walled CNT

Single atomic layer of carbon's graphite structure

- 1D system: carriers propagate forward or backward
- no small angle scattering of electrons or holes by defects or phonons
- ~ no backscattering \rightarrow lower resistivity
- ballistic characteristic in ~ 100nm
- no need to use SiO₂ as gate insulating film
- good control over the critical dimension: diameter
- high chemical stability and robustness

SW-CNT FET

source/drain: metal or electrostatically "doped" CNT carrier transport region: SW-CNT

(Avouris,)

(Javey, 2003)

SW-CNT FET Operation

- Initially assumed that gate voltage modified the nanotube conductance.
- Now we know it is the Schottky Barrier (SB) at contacts that play a central role in the switching characteristic
- When SB is large enough to block current, switching occurs by modulation of contact resistance
- For small SB, conventional channel limited FET (depends on channel conductance)

Metal-Semiconductor Junction

Ohmic Contact:

No potential difference between metal and semiconductor

Schottky Diode:

Potential barrier between metal and semiconductor

Zeghbroeck, 2004

Schottky Diode

Potential Barrier: Difference between Fermi energy of metal and the band edge with the majority carriers

Thermal Equilibrium

Forward & Reverse Bias

Positive voltage on metal: Current through device (Forward Bias)

Negative voltage on metal: -~ No current through device (Reverse Bias)

Zeghbroeck, 2004

Schottky Diode Current

• Diffusion:

carriers move from hi concentration to low

• Tunneling:

electron waves penetrate the barrier depends exponentially on the barrier height

Thermionic Emission:

energetic carriers cross the barrier

Schottky Barrier & CNT-FET

- ON current depends on SB
- SB is sensitive to metal work function
- Metal work function is sensitive to absorbed gases, such as O2
- Increasing work function reduces SB for p-type
- Decreasing work function reduces SB for n-type

Schottky Barrier & CNT-FET

- exposure of Pd to molecular hydrogen reduces its work function at room temperature
- experiment results:
 - higher SB for holes: decreased p-channel conductance
 - lower SB for electrons: increased n-channel conductance

CNT-FET Devices

MetalSD-FET

metal electrodes as Source/Drain (S/D)

DopedSD-FET

electrostatically "doped" CNT as S/D

channel: CNT below top gate region

S/D electrodes: CNT outside top gate region

(Javey, 2004)

Complementary CNT-FET

Traditional CMOS

- CMOS circuits utilize 2 types of MOSFET devices to create circuits
- n-channel (n-FET) and p-channel (p-FET) transistors are the foundation of analog and digital circuits
- In order to replace the current CMOS technology, CNT-FETS must offer a comparable option to each of the MOS types

Simplest Design

 The simplest case for creating a CNT-FET is to use the whole nanotube as a channel with a Source and Drain contact

Operation of a MOSFET

- Source and drain are created in a substrate that has the opposite doping profile (no channel for charge to flow)
- Gate (Metal or Poly-Silicon) controls the formation of the channel
- Above a certain voltage, a channel of charge carriers is created and charge can flow

Similarities in operation

- The operation of a CNT-FET can be modeled on the operation of a MOSFET
- The SWCNT behaves as the channel for the charge carriers
- The gate voltage controls whether the channel conducts
- The function of the source and drain (for charge carriers) is also the same

Differences

- The Source and Drain (S/D) contacts are formed using metals instead of heavily doped Si
- In a simple CNT-FET, no doping is needed to create a n-type or p-type FET
- The type of CNT-FET depends on the band-gap of the CNT and the work function of the metal used as the S/D contact

S/D Contacts (PMOS)

- The best case scenario is an Ohmic contact between the S/D and the CNT (zero or negative Schottky barrier height)
- In order to form a good Ohmic contact, the work function of the metal must be higher than the work function of the CNT
- The flow of holes in the channel can be controlled by the gate voltage

I-V curve of p-FET

 The I-V response the p-(CNT)-FET is similar to the response of a PMOS (Pd contacts

Analysis of I-V curves

- From the I-V curve of the p-FET, the following physical properties of the transistor were obtained:
 - Gon ~ 0.1-0.2 x 4e²/h (Ron ~ 50 kOhms)
 - Gon/Goff ~ 10^5
 - $\mu_{\rm p}$ ~ 3400 cm²/V*s $\mu_{\rm p}$ ~ 8000 cm²/V*s (depending on the height of the SBs at the interface)
 - Saturation current can be up to 20 μ A
 - Subthreshold swing (S) = 100-150mv/decade

I-V Curve of n-FET

 An n-FET is created with a CNT of 2-3nm diameter and AI contacts

Analysis of n-FET I-V curve

- From the I-V characteristics of the n-FET, the following properties were observed:
 - Gon ~ 0.05 x 4e²/h (Ron ~ 100 kOhms)
 - lon/loff $\sim 10^4$
 - $-\mu_{n} \sim 3750 \text{ cm}^{2}/\text{V*s}$
 - Saturation current can be up to 10 μ A
 - Subthreshold swing (S) = 150mv/decade

Comparison of n-FET and p-FET

- Palladium (Pd) is the best contact metal found for p-FETS (no SB at the interface)
- Aluminum is used to create near Ohmic contacts with the SNT in n-FET
- Small SBs exist at the interface between Al and CNT
- Overall performance of p-FET is better than n-FETS

Ambient Factors

• The performance of CNT-FET also depends on the ambient temperature

I-V Hysteresis

Possible Explanation

Solution

 A possible solution is to use PMMA passivation

Threshold Voltage

- For p-FET
 - Vth ~ 0.6V
- For n-FET
 - − Vth ~ 0.3V
- The Vth can be reduced further with better gate materials
- Slight variations in Vth are present due to the variation in the diameter of the CNTs

Fabrication

 Fabrication of both n and p type CNT-FETs is possible on the same chip

Applications to logic circuits

DopedSD-FET Fabrication

- form metalSD-FETs on SiO₂/p+ Si subtrate
- 100nm SiO2 cover most areas of substrate
- 10nm SiO2 locally under channel region (grown by dry oxidation)
- Atomic Layer Deposition of 8nm HfO₂ film using alkylamid/150 °C
 - anneal at 180 °C for 2 hours after deposition
 - \rightarrow no unintentional p-doping of nanotubes
 - less degradation in Pd-SWNT contacts compared to ZrCl₄ ALD at 300 $^\circ\text{C}$
- form top gate (AI)

DopedSD-FET Size

- SEM image of device
- total tube length ~2 μ m
- top-gated section length ~ 0.5 μm
- tube diameter ~ 2.3nm

(Javey, 2004)

Electrical Properties

- tube diameter d~2.3±0.2nm
- g_m~20 µS (5000 S/m, normalized to 2d)
- I_{on_sat} ~15 µA & G_{on} ~ 0.1x4e²/h
 → 5 times higher than Si p-MOSFET
 → 3 times higher than DopedSD-FET

with Mo electrodes

Electrical Properties

- subthreshold swing ~ 80mV/decade
- Bias-independent I_{min}
- $I_{on}/I_{min} > 10^4$

Electrical Properties

Ambipolar Conduction:

- higher gate voltages
- electrons tunnel in the direction of drain to source
- increases off current

Electrical Properties

 comparable p-channel ON states for Pd MetalSD-FET and DopedSD-FET:

 I_{on} ~15-20 μA , G_{on} ~ 0.1x4e²/h

 \rightarrow high-k deposition does not degrade ON state

channel transmission = L_{mfp}/(L_{mfp}+L) ~0.1
 relatively long tubes → nonballistic channel

L: 3 µm→ Ron: 200k (nonballistic)

L: $300nm \rightarrow Ron: 10k\Omega$ (~ballistic)

Future Improvements:

Shrink channel length in top-gated & S/D tube segments Require novel lithography and self-aligned processes

Properties of different CNT-FET device geometries

- Two geometries
 - MetalSD-FET's
 - DopedSD-FET's
- Comparison of critical device properties
 - I_{min}
 - N-channel leakage current

Reminder of device geometries

MetalSD-FET

DopedSD-FET

- $SiO_2(t_{ox}) \sim 67nm$
- N-channel leakage
 - Negligible
- I_{min}
 - determined by thermal activation over the full band gap of the tube

$$-I_{ON}/I_{OFF} \sim 10^6$$
, d>3 nm = E_g<0.4 eV

- What happens when keep scaling down FET?
- SiO₂ (t_{OX}) ~ 10nm
- N-channel leakage
 - High
 - Ambipolar conductance
 - Due to thin SB (width SB ~ t_{OX})
 - Therefore tunneling through SB to conduction band of CNT

• I_{min}

- Higher for thinner gate oxides
- Higher V_{DS} = higher I_{Min}
- As scale MetalSD-FET
 - Unacceptable off-state current for useful operating voltages

$$I_{MIN} \propto \exp\left(-\frac{(E_g - e|V_{DS}|)}{k_B T}\right)$$

Notice 1.Ambipolar

Current always flow from source to drain

d~2.3 nm SiO₂~10nm

Notice

 Ambipolar
 Increasing I_{min} with increasing V_{DS}

Increasing bias voltage

Notice

 Ambipolar
 Increasing I_{min} with increasing V_{DS}
 I_{ON}/I_{OFF}

 $I_{ON}/I_{OFF} \sim 10^3$

as compared to 10⁶ for thick t_{OX}

- Band diagram description
- V_{DS} & eV_{DS} constant
- Barrier to holes $(\Delta_p) =$ Barrier for e's (Δ_e) $\Box \Delta_p = \Delta_e(E_q - e|V_{DS}|)/2$

Band diagram description

 $\Box \Delta_{p} = \Delta_{e}(E_{q}-e|V_{DS}|)/2$

- V_{DS} & eV_{DS} constant
- Barrier to holes (Δ_p) = Barrier for e's (Δ_e)

- Fermi levels of source and drain remain constant
- Increase gate voltage
- E_V and E_C shift down
- Barrier larger for holes/smaller for electrons
- Electron tunneling produces current

- Fermi levels of source and drain remain constant
- Increase gate voltage
- E_V and E_C shift down
- Barrier larger for holes/smaller for electrons
- Electron tunneling produces current

DopedSD-FET

- Advantages over scaled down MetalSD-FET's
 - Doped semiconductor S/D like traditional MOSFET
 - MetalSD-FET uses SB
 - Better ambipolar conductance behavior
 - $-\,Lower\,\,I_{\rm min}$
 - $-I_{ON}/I_{Min} \sim 10^5$

DopedSD-FET device properties

• N-channel leakage current low

– High gate voltage for $I_{N-channel}$ compared to I_{ON}

• I_{\min}

$$I_{MIN} \propto \exp\left(-\frac{(E_g - E_d)}{k_B T}\right) = E_d - energy spacing from E_V to E_F in p-doped SD$$

- $\rm E_{d}$ is the energy spacing from $\rm E_{V}$ to $\rm E_{F}$ in p-doped SD
- E_d is set by back-fate electrostatic doping
 Ex: V_{GS-Back} ~ -2V gives E_d ~ 0.2eV\
- $I_{\rm Min}$ no longer sensitive to $V_{\rm DS}$

DopedSD-FET device properties

Example of transfer characteristics of dopedSD - FET

Notice

1. No ambipolar behavior 2. Low off state current 3. $I_{ON}/I_{Min} \sim 10^5$

Excellent off states for DopedSD-FET with small d SWNT but at expense of lower I_{ON}

Summary

 Can create FET from SWNT by using schottky barriers

– MetalSD-FET

- However, as scale down MetalSD-FET device properties become less desirable
 - I_{Min} increases
 - Ambipolar behavior
- By using a back-gate to create SD from SWNT itself, improve device performance at smaller dimensions

- Chemically dope SWNT to create SD as opposed to electrostatically doping
 - Dope source and drain regions with potassium
 - Currently exposure to air reverses doping process due to reactivity of K

Javey A, Tu R, Farmer DB, et al. NANO LETTERS 2005

- N-type SWNT-FET
- For SWNT ~ 1.6nm
 & E_g~0.55eV
 - Subthreshold swing
 ~ 70mV/decade
 - Small ambipolar behavior
 - $\ I_{ON} / I_{OFF} \sim 10^6 \ @ V_{DS} \\ \sim 0.5 V$
 - High on currents

Javey A, Tu R, Farmer DB, et al. NANO LETTERS 2005

Blue = before doping Red = after doping

- Effects of doping
- Increased doping
 - I_{ON} increased
 - Larger ambipolar pchannel conduction
 - I_{Min} increased

Javey A, Tu R, Farmer DB, et al. NANO LETTERS 2005

- Comparison of n-type SWNT-FET with Si nMOS
- SWNT-FET
 - Compare at power supply voltage of

$$V_{dd} = V_{DS} = V_{gs}(on) - V_{gs}(off) = 0.5V$$

- I_{ON} per unit width
- Si nMOS
 - Same power supply
 - Same I_{ON}/I_{OFF} ratios as SWNT
- For all I_{ON}/I_{OFF} ratios SWNT-FET has a higher on current

Javey A, Tu R, Farmer DB, et al. NANO LETTERS 2005

Optimization of SB-CNT FET

- Two important figures of merit: subthreshold current, $I_{\text{on}}/$ I_{off} ratio
- using thin high-k material as gate dielectric
 → increase coupling between gate and CNT
 → increase I_{on}, increase I_{off} (ambipolar behavior)
- Double Gate (DG) structure \rightarrow suppress ambipolar

n-type device: 1st gate controls electron injection at source 2nd gate reduces hole injection at drain

Single Gate Structure

Ambipolar Behavior

- Positive $V_d > V_g$
- \rightarrow suppresses SB at drain contact
- \rightarrow increases hole injection
- \rightarrow increases current in off regime (no saturation)

(Pourfath, 2005)

Double Gate Structure

first gate controls carrier injection at source (I_{on}) second gate controls carrier injection at drain (I_{off})

(Pourfath, 2005)

Double Gate Structure

- V_{g2}=V_d → flat band edge near drain
 (D)
 - → suppressed tunneling effect of holes near D
 - → only some thermionic emission current
- V_{g2}>V_d → thermionic emission of holes at D decrease exp.

(Pourfath, 2005)

Double Gate Structure

V_{g2} = V_d
 I_d doesn't increase until V_d = V_{g1}
 injected carriers at 'S' see thick
 barrier near 'D' until V_d > V_{g1}

 V_{g2} > V_d
 injected carriers at 'S' see thin barrier even at low V_d while holes at 'D' see thick barrier

(Pourfath, 2005)

Double Gate Overview

- 1st gate controls carrier injection at source contact (I_{on})
- 2nd gate controls carrier injection at drain contact (I_{off})
- Minimum I_{off} is limited by thermionic emission over SB
- $V_{g2} \ge V_d$
 - $V_{g2} = V_d$:
 - ✓ avoids parasitic cap between 2nd gate & drain
 - ✓ no separate voltage source needed
 - ✓ more feasible fabrication

Benchmarking nanotechnology

- Chau R, Datta S, Doczy M, et al. IEEE Transactions
 On Nanotechnology, 2005
- Comparing PMOS transistors
 - CNT-FET's
 - Si nanowire FET's
 - Nonplanar Si devices
- Metrics
 - Speed CV/I vs L_q
 - Switching energy $CV/I * CV^2 vs L_g$
 - Scalability transistor subthreshold slope vs L_a
 - Off- state leakage CV/I vs I_{ON}/I_{OFF}

Intrinsic device speed

- CNT-FET's show CV/I improvement over Si-FET's
 - Due to better mobility
 - Estimated CNT mobility at least 20 times higher than Si
- Si NW FET's show similar data to Si FET's
- CNT and Si NW FET's have not been scaled below L_g=50nm

Switching energy

- CNT-FET's show better characteristics than Si-FET's
 - Due to higher effective motilities

Scalability

- Novel nanoelectronic devices have not been well demonstrated below $L_q \sim 50$ nm
- Are they scalable?
 - Subthreshold slope

Gate Delay

- Si & CNT devices
 - CV/I Improves with reducing I_{ON}/I_{OFF}
- CNT show better CV/I values for a given I_{ON}/I_{OFF}
 - Due to higher mobility
 - I_{ON}/I_{OFF} limited by ambipolar behavior

References

- Unless otherwise noted all references came from
 - Javey A, Guo J, Farmer DB, et al. Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and Highk Gate Dielectrics NANO LETTERS 4 (3): 447-450 MAR 2004
- Javey A, Tu R, Farmer DB, et al. High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts NANO LETTERS 5 (2): 345-348 FEB 2005

References

Avouris, P.; Appenzeller, J.; The Industrial Physicist. June/July 2004.

- Javey, A.; Guo, J.; Farmer, D. B.; et al. Nano Lett. 2004, 4, 447.
- Javey, A.; Guo, J.; Wang, Q.; et al. Nature 2003, 424, 654.
- Javey, A.; Wang, Q.; Woong, K.; et al. Advancements in Complementary Carbon Nanotube Field-Effect Transistors *IEEE*. (2003)
- Heinz, S.; Tersoff, J.; Martel, R.; et al. Phys. Rev. Lett. 2002, 89, 8601
- Pourfath, M.; Ungersboeck, E.; Gehring, A.; et al. *Microelectronic Engineering* **2005**, 81, 428
- Van Zeghbroeck, B. < http://ece-ww.colorado.edu/ ~bart/ book/ book/ cont entc. htm>. Nov. 2005