1.1 Deduce the following expressions for k_F , $n(E_F)$ and $D(E_F)$ for 1, 2, and 3 dimensional systems.

Dimension	k_F	$n(E_F)$	$D(E_F)$
3	$(3\pi^2n)^{1/3}$	$\frac{1}{3\pi^2} \left(\frac{2mE_F}{\hbar^2}\right)^{3/2}$	$rac{1}{2\pi^2}igg(rac{2m}{\hbar^2}igg)^{\!\!3/2}\sqrt{E_F}$
2	$\sqrt{2\pi n}$	$\frac{m}{\pi\hbar^2}E_{\scriptscriptstyle F}$	$\frac{m}{\pi \hbar^2}$
1	$\frac{\pi n}{2}$	$rac{2}{\pi\hbar}\sqrt{2mE_{F}}$	$rac{\sqrt{2m}}{\pi\hbar}rac{1}{\sqrt{E_F}}$

- 1.2 Calculate the Fermi wavelength (De Broglie wavelength at the Fermi surface) for two conductors with carrier density of $10^{23} \, \mathrm{cm}^{-3}$ (a metal) and $10^{18} \, \mathrm{cm}^{-3}$ (a semiconductor), respectively. Which of the two systems will be first to exhibit quantum size effects as the sample sizes are reduced?
- 1.3 Calculate the scattering time and the mean free path of Cu at room temperature, which has a carrier density $n = 8.47 \times 10^{22} \, \text{cm}^{-3}$, and resistivity $\rho = 1/\sigma = 1.72 \, \mu \text{m} \cdot \text{cm}$.