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The electrical resistance of a conductor is intimately related to the
relaxation of the momentum of charge carriers. In a simple model,
the accelerating force exerted on electrons by an applied electric
®eld is balanced by a frictional force arising from their frequent
collisions with obstacles such as impurities, grain boundaries or
other deviations from a perfect crystalline order1. Thus, in the
absence of any scattering, the electrical resistance should vanish
altogether. Here, we observe such vanishing four-terminal
resistance in a single-mode ballistic quantum wire. This result
contrasts the value of the standard two-probe resistance measure-
ments of h/2e2 < 13 kQ. The measurements are conducted in the
highly controlled geometry afforded by epitaxial growth onto the
cleaved edge of a high-quality GaAs/AlGaAs heterostructure. Two
weakly invasive voltage probes are attached to the central section
of a ballistic quantum wire to measure the inherent resistance of
this clean one-dimensional conductor.

Electronic transport with no scattering can occur in nanoscale
solid-state devices2±8. Conceptually, the simplest of these structures
is the ballistic one-dimensional wire6±8, in which the transverse
motion is quantized into discrete modes, and the longitudinal
motion is free. In this case electrons are envisioned to propagate
freely down a clean narrow pipe. However, the actual resistance of
such a wire is found to be very different from zero. Instead, its value
is the resistance quantum (R0 = h/2e2) divided by the number of
occupied transverse modes9. Hence, in the quantum limit, when the
pipe is suf®ciently narrow to support only a single mode, the
resistance of a perfect wire is rather large: R0 < 13 kQ.

The origin of this resistance is best appreciated in the framework
of a model for one-dimensional conduction proposed by
Landauer10,11. We consider two electron reservoirs connected by a
perfect single-mode wire. To maintain a current, I, through the wire,
a higher electrochemical potential is imposed on the right-hand side
(r.h.s.) reservoir, min

r , than on the left-hand side (l.h.s.) reservoir, min
l .

Electrons that propagate through the wire to the left, away from the
r.h.s. reservoir, maintain its electrochemical potential, ml = min

r .
Conversely, electrons that propagate to the right maintain the
electrochemical potential of the l.h.s. reservoir, mr = min

l (see
Fig. 1c). In the absence of scattering, these electrochemical poten-
tials do not vary along the wire.

However, although both ml and mr are uniform throughout the
length of the wire, both vary at its ends, where the wire is connected
to the reservoirs. These steps arise from electron scattering that
equilibrates left movers and right movers with the local electro-
chemical potential of the reservoir. The variations in ml and mr can be
viewed as contact resistances to the wire12,13, each having a value
Rc = R0/2. This is the origin of the relatively high resistance observed
in two-terminal measurements on a quantum wire. On the other
hand, within the wire the electrochemical potentials are indepen-
dent of position and the result of a four-terminal resistance
measurement should be zero, in the ideal case. We will refer to
this as vanishing `intrinsic resistance'.

Here we report the realization of a four-terminal geometry, which
allows us to measure this intrinsic resistance of a quantum wire. The
wires are fabricated from GaAs/AlGaAs heterostructures using the
cleaved-edge overgrowth (CEO) technique14 as illustrated in Fig. 1a.

The resultant wire resides all along an atomically precise edge of a
GaAs quantum well. The quantum well itself supports a two-
dimensional electron gas (2DEG) that is coupled to the wire from
the side. We use prefabricated top gate electrodes (see Fig. 1a) to
shape this 2DEG sheet. Biasing any one of the gates depletes the
2DEG underneath and creates a stretch of one-dimensional wire in
front of it, which is now separated from the 2DEG. The width of
the gate de®nes the length of this isolated wire section, and the
2DEG areas on either side conveniently serve as source and drain
contacts to the wire. This geometry lends itself to a straightforward
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Figure 1 Electronic transport in cleaved-edge overgrowth quantum wires. a, Geometry of

the CEO device. The fabrication starts with a high-quality 2DEG created by epitaxial

growth of a unilaterally doped GaAs quantum well onto a [001] GaAs substrate. The

resultant 2DEG has a carrier density ns < 2:5 3 1011 cm2 2, and mobility

m < 4 3 106 cm2 V2 1 s 2 1. Subsequently, this wafer is cleaved inside the MBE chamber

to expose a clean and atomically smooth [110] surface, which is immediately overgrown

with a modulation-doped epitaxial-layer sequence. The additional remote Si dopants that

are introduced by this overgrowth step lead to a higher electron density near the cleaved

edge of the quantum well. As in conventional modulation-doped samples, a strong built-in

electric ®eld binds this excess charge to the cleaved-edge interface, creating one-

dimensional bound states all along the edge of the GaAs quantum well. This wire contains

about 10 electronic modes and coexists with a 2DEG that resides in the quantum-well

plane and couples to the wire from the side. To separate the 2DEG from the wire, pre-

fabricated tungsten gate electrodes (for example, gate 1) are used. They deplete the 2DEG

underneath them but preserve the one-dimensional channel in this region along the edge.

The width of the tungsten gate de®nes the length, L, of the isolated wire section.

Increasing the gate voltage beyond depletion of the 2DEG provides a convenient tool to

control the number of occupied one-dimensional modes in this wire section. Three gates

allow us to separate out four distinct 2DEG regions (see text). b, A representative result of

a two-terminal conductance measurement of a CEO wire at a temperature, v � 300 mK.

For this measurement, only one electrode (say, number 1) is activated, which creates in its

front a 2-mm-long section of an isolated one-dimensional wire. Clear conductance

plateaux arise, attesting to the high quality of the wire. Practically identical behaviour is

observed for the wire sections in front of all electrodes (not shown). The value of the

quantized resistance is somewhat larger than the universal value of R0
7,8,19. The origin of

this deviation is non-ideal coupling between the CEO wire and its 2DEG source and drain

contacts19. Because the goal of the present paper is the determination of the intrinsic wire

resistance by a four-probe measurement, which is insensitive to any contact resistance,

this non-ideal current injection is inconsequential. c, The spatial behaviour of the

electrochemical potentials of left and right movers, ml and mr respectively, and of the

electrical potential, f, in a two-terminal geometry.
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two-probe measurement on a quantum wire. Figure 1b shows the
high-quality, quantized conductance steps that are observed in
such a specimen as successive one-dimensional sub-bands are
depopulated.

To create the more complex contacting geometry for a four-probe
measurement, we use a pattern of three successive electrodes
(numbers 1±3 in Fig. 1a). This con®guration establishes two
narrow 2DEG strips (A and B), that serve as voltage taps into the
central portion of the wire. The wide 2DEG regions to the far right
and far left serve as source and drain contacts for the current, as in
the two-probe case. This gate con®guration offers unique ¯exibility.
Activating only electrode 2 provides a two-terminal measurement
on the central section of the wire. Biasing all three electrodes creates
an extended quantum wire along the edge and separates voltage
probes A and B from the source and drain respectively. This allows
us to perform a four-probe measurement on the same central
section of the wire. Such a small change in the biasing scheme of
our CEO sample switches directly from two-probe to four-probe
geometry with marked consequences.

Figure 2 shows the result of a two-probe and a four-probe
measurement on the same CEO quantum wire. The width of each

gate electrode is L = 2 mm. The gates are separated by 2DEG strips of
width W = 2 mm each. For the four-probe measurement electrodes 1
and 3 are set to maintain a single transverse mode in the respective
wire sections, whereas these gates are not activated in the two-probe
case. In both measurements the bias to the central electrode is
scanned, depopulating successive one-dimensional sub-bands. As is
evident from Fig. 2, the two-terminal resistance moves through the
characteristic quantized resistance steps, whereas the four-terminal
resistance hovers around zero resistance, with small mesoscopic
¯uctuations superimposed. This is the central result of our experi-
mental work: the inherent resistance of a clean one-dimensional
wire is vanishingly small.

It demonstrates experimentally that the speci®c two-terminal
resistance value stems from an existing `contact resistance' between
the wire and the two macroscopic electron reservoirs at either end.
In a two-terminal resistance measurement this inherent contact
resistance adds to the intrinsic resistance of the wire and hence, even
for a perfect wire, the two-terminal resistance is at least R0 per
mode13. We will now discuss in detail the physics of two-probe
versus four-probe measurements on a quantum wire.

A four-terminal geometry is a common method used to circum-
vent contributions from the contacts to the measured resistance.
Typically, a current is driven by two contacts at the far ends of a long
rectangular specimen. The electrochemical potential drop along the
current path is determined by two separate voltage probes, located
near the centre of the specimen, far away from the current contacts.
To deduce the intrinsic resistivity, it is essential that the voltage
probes do not disturb the current ¯ow. In two or three dimensions,
this is readily accomplished by using small voltage probes that leave
contiguous regions of the specimen intact. In one dimension this
cannot be accomplished for obvious geometrical reasons and
voltage probes are always `invasive'. This invasiveness of a voltage
probe is intimately related to the probability that an electron passing
the probe will scatter into it15±19. In general, the transmission
probability of left movers, Tl, and right movers, Tr , may differ.
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Figure 2 Two- and four-terminal resistances of a ballistic quantum wire. The dashed line

shows the two-terminal resistance of the 2-mm-long central section of the wire versus the

voltage applied to the associated gate 2. Gates 1 and 3 are not activated. The solid line

shows the four-terminal resistance, (VA - VB)/I, versus the voltage applied to gate 2. Here

VA and VB are the voltages at probes A and B respectively and I is the current driven from

source to drain. For this measurement, the voltages applied to gates 1 and 3 correspond

to a single mode in the wire sections in front of these gates. Measurements were

performed at a temperatureof v � 300 mK with an excitation current smaller than 1 nA.

While the two-terminal resistance moves through the characteristic quantized resistance

steps, the four-terminal resistance ¯uctuates around zero indicating that the inherent

resistance of a clean one-dimensional wire is vanishingly small. The small oscillations

around zero resistance (from -3.8V to -4.5V) suggest that mesoscopic variation of the

various transmission amplitudes with the one-dimensional density dominate the resis-

tance in this regime. Indeed a similar, although not identical, pattern is observed upon

successive cool-downs of the same device. As expected, similar mesoscopic variations

are observed when a magnetic ®eld is applied (see Fig. 3). Inset, probe invasiveness in a

quantum wire. Diamonds, the ratio between the four-terminal and two-terminal

resistances versus the invasiveness of the voltage probes (see text). Solid line, theoretical

prediction of the Landauer±Buttiker model16 (see text). All measurements are for single-

mode wires.
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Figure 3 Magnetic ®eld dependence of probe coupling. Magnetic ®eld dependence of the

two-terminal (VS/I ), three-terminal (VA/I and VB/I ) and four-terminal (�V A 2 V B�=I )

resistances. The sections of the wire in front of all three gates support a single mode. The

invasiveness of both probes is about 4%. The voltages at both taps vary from V < VS

(voltage at source) at large positive ®eld to V < VD = 0 (voltage at drain) at large negative

®eld.
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Yet, in the simplest case of symmetric coupling, the invasiveness is
proportional to T � T l � Tr �

1
2
�R2t=R� with R2t and R being the

two-terminal resistance and the resistance of the probe±wire inter-
face respectively. The smaller T is, the less invasive is the voltage
probe, leaving the wire practically undisturbed17,19.

The results shown in Fig. 2 correspond to a device with two
2-mm-wide 2DEG probes. The resistance between each probe and
wire is about 250 kQ (not shown) indicating that their invasiveness
is merely about 4%. Moreover, the overall source±drain resistance
of the three wire sections in front of the electrodes, each having one
occupied transverse mode, is about 20 kQ (not shown). This value is
only slightly larger than the 19 Q two-terminal resistance of the
2-mm-long central section (see Fig. 2), whereas classically we would
have expected at least a tripling of the resistance. The absence of a
signi®cant increase of the overall resistance further indicates the low
invasiveness of the voltage probes and the negligible back scattering
in the wire.

Our device geometry allows extensive control over the 2DEG-
wire coupling and hence over the invasiveness of a contact to a CEO
wire. For example, the gap between electrodes 1 and 2 controls the
invasiveness of probe A. It can be made weaker (stronger) by
reducing (increasing) the width, W, as compared to the two- to
one-dimensional scattering length. This scattering length was pre-
viously determined to be approximately 6 mm in our wires19, and is
easily achieved with electrode separation established by standard
photolithography.

The inset of Fig. 2 shows a plot of the ratio, a, of the four-terminal
to the two-terminal resistance, against the transmission, T. We ®nd
that a increases monotonically with T, approaching unity together
with T itself. These data are in good agreement with theoretical
predictions16 for a four-terminal measurement with symmetrically
coupled probes of invasiveness T: a = T/(2 - T). It clearly demon-
strates the crucial role played by the invasiveness of the voltage
probes in a four-terminal resistance measurement of a ballistic
quantum wire. In the limit of fully invasive probes, T ! 1, the
voltage probes essentially break the wire into three separate pieces
and thus defeat their purpose, because in this limit a four-terminal
measurement yields the same value as a two-terminal one. These
results demonstrate the special role played by quantum coherence in
the series addition of one-dimensional wires. A very invasive voltage
probe acts as a strong inelastic scatterer that collapses the gap
between the electrochemical potentials of left and right movers17.
Such a collapse at the location of each probe leads to the well known
addition rule for classical resistors.

In a ballistic one-dimensional wire, left and right propagating
electrons acquire two distinct electrochemical potentials. This
behaviour is unique to one dimension and is a direct result of the
absence of back scattering. The idea of a local electrochemical
potential, and therefore of the meaning of a voltage measurement,
is thus exceptional in a ballistic wire. A voltage measurement
corresponds to the value of the probe's electrochemical potential
required to null the probe±sample current. In diffusive samples the
probe acquires the local electrochemical potential of the neighbour-
ing sample region. In a ballistic wire, however, the electrochemical
potential required to null the probe±wire current is, in general,
mp � aml � bmr, with a � T l=�Tr � T l� and b � Tr=�Tr � T l�.
For example, a probe that couples only to left movers (Tl = 1 and
Tr = 0) will measure ml while a probe that couples only to right
movers will measure mr. A ballistic wire has two distinct electro-
chemical potentials and thus there are many ways to de®ne the
internal resistance.

This ambiguity can be resolved by requiring charge neutrality.
The spatial charge density of electrons, when averaged over a length
scale larger than the screening length, is always compensated by a
®xed positive background charge, leaving the sample as a whole
neutral. In two or three dimensions, this implies m�x�2 f�x� � C,
with f the local potential and C a translation invariant constant.

Thus, the electrochemical potential difference in a four-terminal
con®guration yields the potential drop between voltage probes. On
the other hand, in one dimension charge neutrality implies
mÅ�x�2 f�x� � C, with mÅ � �ml � mr�=2 (see Fig. 1c). Therefore,
only a symmetric voltage probe, with Tr � T l and thus mp � mÅ,
can measure the local one-dimensional potential. This analogy
between the one-dimensional case and the two- to three-dimensional
case makes it seem natural15 to de®ne the intrinsic resistance of a
ballistic wire in terms of mÅ, rather than in terms of ml or mr.

The voltage probes of our four-terminal geometry are highly
symmetric. To illustrate this, we measure the voltage of each probe,
VA and VB, with respect to the drain. We ®nd both voltages to be
about half the voltage applied from source to drain, although the
distance from the drain to probe A is twice the distance to probe B.
This result shows that both probes measure mÅ regardless of their
location and also con®rms the view of two equal `contact resis-
tances' existing at each end of the wire. To further illustrate the effect
of the probe±wire coupling symmetry, we measure VA and VB as a
function of a magnetic ®eld applied perpendicular to the quantum-
well plane, as shown in Fig. 3. The effect on the 2DEG is small since
at 1 T the ®lling factor is n < 10. With increasing positive magnetic
®eld, the voltage at both probes increases, and saturates at approxi-
mately 1 T with a value close to the source voltage. Conversely, a
negative magnetic ®eld reduces the voltages to a value close to the
voltage of the drain. This voltage swing originates from the Lorenz
force exerted on the carriers. A positive (negative) magnetic ®eld
forces the left-moving (right-moving) electrons in the wire closer to
the 2DEG probes. Hence the magnetic ®eld breaks the symmetry of
the coupling by establishing preferential coupling between the
probes and either left or right movers, depending on the ®eld
direction. When only left (right) movers couple to the probes their
voltages approach the source (drain) voltage. To fully break this
symmetry requires a magnetic ®eld of about 1 T, which corresponds
to a magnetic length of approximately 250 AÊ , in good agreement
with the width of our wire of about 200 AÊ .

Thus we were able to perform four-terminal resistance measure-
ments on ballistic quantum one-dimensional wires and observed a
vanishing resistance. This demonstrates experimentally that the
high resistance values observed in two-probe measurements on
such systems originate from the contacts alone, and that the
intrinsic resistance is negligible. Our results validate the view of
the quantized resistance being twice the minimal contact resistance
to a single wire mode. M
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The interplay of magnetic interactions, the dimensionality of the
crystal structure and electronic correlations in producing super-
conductivity is one of the dominant themes in the study of the
electronic properties of complex materials. Although magnetic
interactions and two-dimensional structures were long thought to
be detrimental to the formation of a superconducting state,
they are actually common features of both the high transition-
temperature (Tc) copper oxides and low-Tc material Sr2RuO4,
where they appear to be essential contributors to the exotic
electronic states of these materials1. Here we report that the
perovskite-structured compound MgCNi3 is superconducting
with a critical temperature of 8 K. This material is the three-
dimensional analogue of the LnNi2B2C family of superconductors,
which have critical temperatures up to 16 K (ref. 2). The itinerant
electrons in both families of materials arise from the partial ®lling
of the nickel d-states, which generally leads to ferromagnetism as
is the case in metallic Ni. The high relative proportion of Ni in
MgCNi3 suggests that magnetic interactions are important, and
the lower Tc of this three-dimensional compoundÐwhen com-
pared to the LnNi2B2C familyÐcontrasts with conventional ideas
regarding the origins of superconductivity.

The variable stoichiometry compound MgCxNi3 (where 0:5 .
x . 1:25) has been previously reported; it was supposed to have a
perovskite structure by analogy3,4. Neither its crystal structure nor
its physical properties had been determined previously. In this
study, samples with nominal formula MgCxNi3 for x � 1:5, 1.25,
1.1, 1.0 and 0.9 were prepared. The starting materials were bright
Mg ¯akes (Aldrich Chemical), ®ne Ni powder (99.9% Johnson
Matthey), and glassy carbon spherical powder (Alfa AESAR). The
starting materials were mixed in 0.5-g batches, and pressed into
pellets. The pellets were placed on Ta foil, which was, in turn, placed
on an Al2O3 boat, and ®red in a quartz tube furnace under a mixed
gas of 95% Ar and 5% H2. The samples were heated for half an hour
at 600 8C, followed by one hour at 900 8C. After cooling, they were

ground, pressed into pellets, and heated for an additional hour at
900 8C. Owing to the volatility of Mg encountered during the
synthesis of this compound, 20% Mg in excess of the stoichiometric
ratio was employed in the initial mixtures. The structural determi-
nation, described below, indicated that the compound formed was
stoichiometric in metals and that no excess Mg remained in the
samples.

The crystal structure of a superconducting sample (Tc [ 7:3 K,
determined magnetically) of nominal composition MgC1.25Ni3 was
determined by powder neutron diffraction (Fig. 1). The formula
for the superconducting phase was found to be MgC0.96Ni3. The
compound has the classical cubic perovskite structure, space group
Pm3m, with lattice parameter a � 3:81221�5� ÊA. The positions for
the atoms are: Mg 1a (0,0,0); C 1b (0.5,0.5,0.5); and Ni 3c
(0,0.5,0.5). The temperature factors are 0.90(3), 0.54(4), and
0.75(1) AÊ 2 for Mg, C and Ni, respectively. Re®nements were per-
formed with variable stoichiometry allowed for the C site. The C site
occupancy was found to be 0.960(8), making the exact stoichio-
metry MgC0.96Ni3. In agreement with what is expected from the
nominal composition, a small amount of unreacted graphite
(2 wt%) was found in the sample. The sensitivity of the super-
conductivity to the C content of the perovskite phase made it
necessary for carbon excess to be added to the initial mixtures to
ensure attainment of the superconducting composition. The perov-
skite crystal structure for MgCNi3 is shown in the inset to Fig. 1.
Comparison to a familiar oxide perovskite such as CaTiO3, for
example, indicates the structural equivalencies between Ca and Mg,
Ti and C, and O and Ni.

The magnetic characterization of the superconducting transitions
is shown in Fig. 2. The magnetic onset for the superconducting
transition ranges between 7.1 K for a nominal carbon content of
1.1 per MgCxNi3 to 7.4 K for nominal carbon context x � 1:5. The
superconducting transition turns off abruptly for nominal C con-
tents between x � 1:1 and x � 1:0. All samples in the range of
carbon contents shown appear to be single phase by powder X-ray
diffraction (which would not be sensitive to the presence of graphite
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Figure 1 The powder neutron diffraction pattern at ambient temperature for the sample of

nominal composition MgC1.25Ni3 and the perovskite crystal structure for the super-

conducting compound MgCNi3 (inset). Neutrons of wavelength 1.5402 AÊ were employed

(Cu 311 monochromator), with collimators of 159, 209 and 79 of arc before and after the

monochromator, and after the sample, respectively. The neutron scattering lengths

employed in the structure re®nement were 0.538, 0.665 and 1.030 (cm-12) for Mg, C and

Ni, respectively. Data are shown as crosses, and the difference plot between model and

data shown directly below. The vertical lines (bottom) show the Bragg peak positions for

the MgCNi3 phase. The sample contains 2 wt% graphite (about 25 mol.%) in agreement

with the nominal composition. Positions of the graphite peaks are shown as vertical lines

above those for MgCNi3. The re®nement agreement, weighted pro®le agreement, and x2

values obtained were R � 5:14%, Rw � 6:39% and x2 � 1:258, indicating the high

quality of the structural model.
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