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Abstract 
 

This paper reviews the concept, status and challenges of 
emerging nonvolatile memory technologies. The technologies 
that are discussed and compared to state of the art Flash 
technology are the Conductive Bridging RAM (CBRAM), the 
Ferro-electric RAM (FeRAM), the Magneto-resistive RAM 
(MRAM), the Organic RAM (ORAM) and the Phase Change 
RAM (PCRAM). 

 
CBRAM 

 
The CBRAM memory effect is based on a polarity-dependent, 
resistive switching at a low write threshold voltage Vth of 
250mV with typically 2µA write current and an erase voltage 
threshold of -80mV. The ON-state (low resistance) of a 
CBRAM memory cell is achieved after a redox reaction 
driving metal ions in the chalcogenide glass forming metal-rich 
clusters that lead to a conductive bridge between the electrodes. 
The memory element can be switched back to the OFF-state by 
applying a reverse bias voltage. In this case metal ions are 
removed and due to that size and number of metal-rich clusters 
are reduced resulting in an erased conductive bridge (resistance 
increase).          
Scalability of the CBRAM technology from 5µm down to 
100nm has been demonstrated [1]. As a result the threshold 
voltage Vth and the ON-state resistance Ron were observed to 
be feature size independent, whereas the OFF-state resistance 
ROFF shows the expected dependency up to the resolution 
limit of 1011Ohm (Fig. 1).  
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Fig.1  CBRAM cell resistance and threshold voltage as a function of storage 
material area. 

CBRAM data retention has been measured at elevated 
temperatures (Fig. 2). A slight increase of the low resistance 
state could be observed, whereas the ROFF values remain 
constant resulting in a resistance ratio >105 even after 10 years.  
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Fig.2  CBRAM data retention measured at elevated temperatures. 
 

FeRAM 
 

FeRAM stores data as remnant polarization in a ferroelectric 
capacitor.  Fig. 3 shows an SEM cross section of a state of the 
art planar FeRAM cell, used in a 32Mb FeRAM with a cell size 
of 1.9µm2. [2]. Key technology ingredients are the chain 
FeRAM concept and the COP structure (capacitor on plug). 
 
 
 
 
 
Fig.3  32Mb Chain FeRAM cell with COP (capacitor over plug). 

Planar FeRAM cell concepts are limited to cell sizes around 
10F2 (F: minimum feature size) (Fig. 4) and have a limited 
shrinkability potential. In order to address this, a novel chain 
FeRAM cell concept using a new 3 dimensional vertical 
capacitor was developed [2]. This concept is highly scalable 
and enables structurally small cells down to 4F2. The 3d 
vertical capacitor cell saves the space of the V0 contact and the 
cell size is not defined mainly by the capacitor area. A 
hysteresis loop of a vertical capacitor is shown in Fig. 5. 
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Fig.4  Top: Advanced planar FeRAM cell: Acell=9.75F2  

            Bottom: Advanced vertical capacitor cell: Acell=4F2 

 
Fig.5 Hysteresis loop from a vertical capacitor with IrO2 electrodes. 

 

MRAM 
 

In MRAMs the data is stored in the orientation of the 
magnetization of the storage layer. As for many other BEOL 
memory technologies 2 cell flavours are possible, a cross point 
cell and the FET cell, which has an access transistor connected 
in series with the tunnel junction. The highest published 
MRAM chip density of 16Mb was accomplished with the FET 
cell [3] with a 1.4µm2 cell size. Since the XPC does not require 
an access device the cell size can be smaller especially because 
one can stack storage layers on top of each other. However, in 
order to control parasitic currents and the write operating 
margin, higher tunnel resistances are required than for the FET 
cell, resulting in slower random access times.    

 
Fig. 6 MRAM cross point cell realization 
 
In XPC MRAM (Fig. 6), the magnetic stack is deposited 
directly on Cu wires, and then patterned using a single step 
reactive ion etching process, requiring stopping on Cu and ILD 

without corrosion. This customized full stack etch process 
provides magnetic tunnel junction (MTJ) patterning with a 
local cell resistance spread of ~2%. 
The magnetoresistance (MR), the important figure of merit for 
the READ operation, has been limited to ~ 70%. Higher MR 
would increase the read operation margin and enable very 
small MTJs that are essential for scalability. Within our 
MRAM Alliance with IBM, we pioneered the development of 
tunnel junctions with 100 bcc textured MgO tunnel barriers and 
achieved MRs as high as 220% [3]. Fig. 7 shows a resistance 
versus field characteristic for a tunnel junction of this type, 
with this example showing a MR of 165% 

 
Fig. 7 Tunnelling magnetoresistance of MgO MTJ stack, TaN / IrMn / Co84Fe16 
/ Co70Fe30 / MgO / Co84Fe16 / Mg, annealed at three different temperatures (left). 
Cross-sectional TEM image illustrating the highly textured nature of the MgO 
tunnel barrier (right). 

ORAM 
 

The data in the ORAM is stored in an organic storage material 
that exhibits reversible resistive switching (Fig. 8).  
 
 
 
 
 
Fig.8  Schematic view of ORAM cell and IV curve. Reversible w/e operation 
by voltage application, read operation by determination of the high/low 
conductance state. 

With cell structures ≥ 1x2µm2 size a retention of >400 
days@25°C, extrapolated retention of 10 years@90°C and 
an endurance of 1E5 w/e cycles was demonstrated [4]. Fig. 9 
and Fig. 10 address the scalability prospects of this technology. 
 
 
 
 
 
 

Fig.9  Effect of storage material area on resistance values at T=25°C. 
Extrapolation indicates a resistance ratio of >10 at an area of 20x20nm2. 
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Fig.10  Effect of storage material area on switching voltages (quasi static 
experiment at 25°C). 

Extrapolation indicates a sufficient large resistance ratio 
ROFF/RON down to a storage material area of 20x20nm2. The 
switching voltages are independent of the diameter of the 
storage material. Very first promising distribution functions for 
Vth are displayed in Fig. 11. Main challenges for this 
technology will be the uniformity on large areas and the 
thermal budget. 
 
 
 
 
 
 
 

Fig.11  Switching threshold voltage (Vth) distribution functions determined for 
50 cells with a via size of 240nm. 

 
PCRAM 

 
The PCRAM is based on a thermally induced reversible phase 
change between the amorphous and the crystalline phase of a 
chalcogenide glass (GexSbyTez) which is initiated by ohmic 
heating with an electric current pulse (Fig. 12) [5].    
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Fig.12  Schematics of different PCRAM resistor geometries with GeSbTe 
(GST) phase change material: heater cell, active-in-via cell and V-cell (top 
down). In a set-read-reset-read cycle, the set pulse crystallizes the GST while 
reset melts and transforms it into the high resistance amorphous state. 
 
Potential concerns for this technology are reducing the reset 
current in order to obtain structurally small cell sizes while 

maintaining sufficient write operating margin and thermal 
cross talk for dense PCRAM arrays. In order to address these 
concerns, the reset operation was modelled using a finite 
element approach. 
Fig. 13 compares the currents required to melt the GST for 
different geometries and bottom electrode contact sizes. For all 
cell designs, the current scales down with decreasing feature 
size. However, the heater cell exhibits significantly higher reset 
currents due to lateral current spreading.  
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Fig.13  Simulated PCRAM reset current dependence on contact size. 
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Fig.14 Simulated radial temperature distribution normalized to the via diameter 
in active-in-via PCRAM cells after 20ns heating. The vertical line indicates the 
closest position of the next cell in a dense 4F² array. The horizontal line 
indicates the 10a retention criterion for GST material.  

The simulation also shows that the heat plume scales down 
with the via diameter (Fig. 14). The highest published PCRAM 
chip density is 64Mb with a cell size of 0.5 µm2 cell size [5]. 
 

Conclusions 
 

Tab. 1 compares the discussed emerging memory technologies 
to Flash technology [6]. All technologies are non-volatile. All 
of the emerging memory technologies exhibit a better READ 
performance than NAND Flash. Flash requires for writing the 
first bit into the memory many orders of magnitudes longer 
than the emerging technologies. For FeRAM, MRAM and 
PCRAM, which are the most widely pursued non-volatile 
emerging memory technologies, a substantially better WRITE 
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endurance was demonstrated. With the exception of ORAM all 
other discussed emerging memory technologies do not require 
a boosted voltage for the WRITE operation as Flash does. In 
case of the FeRAM technology the READ operation is 
destructive, meaning that after every READ operation the 
information has to be written back into the cell.  
The more mature emerging memory technologies, FeRAM, 
MRAM and PCRAM have comparable properties, with 
MRAM having a performance advantage, FeRAM having a 
maturity advantage and PCRAM having a cell size advantage. 
They all could be used as universal memories, based on their 
non-volatility, READ/Write performance and high endurance. 
In order to not just occupy a niche market but to gain a 
substantial share of the overall memory market, the challenge 
for all of them is closing the cell size gap to the established 
memory technologies, Flash and DRAM.  
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Tab.1 Comparison of the emerging memory technologies to Flash technology. 
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