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Physical Vapor Deposition
svacuum evaporation
ssputtering

smolecular beam epitaxy (MBE)

Chemical Vapor Deposition

satmospheric pressure chemical vapor deposition (APCVD)

slow pressure chemical vapor deposition (LPCVD)

splasma assisted (enhanced) chemical vapor deposition (PACVD,
PECVD)

sphotochemical vapor deposition (PCVD)

slaser chemical vapor deposition (LCVD)

smetal-organic chemical vapor deposition (MOCVD)

schemical beam epitaxy (CBE)



Molecular Beam Epitaxy (MBE)




MBE chamber

Effusion Cells RHEED S
\ Gun Substrate Heater
L 1
T/
/ ez ation
BEF Gauge
& ol
ff ' v To Buffer
\& - Chamber
R ]
1l
CeR \
— Assermbly Cryopanels
o Fluorescent
hutters Sereen

Image from Schlom at ST



RHEED monitoring the film quality
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vacuum evaporation
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Sputtering
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Sputtering vs. evaporation

» Higher energy with sputtering produces higher packing densities and better
adhesion if stresses are low.

» Greater variety of materials including alloys and mixtures can be sputtered than
evaporated.

» Depositions can be made on temperature-sensitive substrates such as polymers.

» Deposition rates are lower for sputtering than for e-beam, but stresses can be
higher.

» Sputtering provides better step coverage, while evaporation is more directional.
« Sputter equipment is more expensive.
» Sputtering optical multi-layers is more difficult.

» Sputtering involves a greater number of process variables than evaporation, but
many of them are stable and repeatable, permitting sputtering to be automated.



Chemical Vapor Deposition (CVD)
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Chemical Vapor Deposition (CVD)
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Gas measurement and metering

Transport of molecules by gas flow and diffusion
Transport of heat by convection, conduction, and radiation
Chemical reactions in the gas phase and at the surfaces

Plasma formation and behavior
Characterization of the resulting films



CVD vs. PVD

pros

*Excellent Step coverage
*Uniform distribution over large
areas

No compositional gradients
across substrate

*No need to break vacuum for
source changes

More selective area deposition
because of higher activation
energy for reaction with foreign
substances.

cons

*Mostly involve safety and
contamination

*Hydrides and carbonyls are
poisonous (especially arsine)
*Metalorganics are pyrophoric
(ignite in contact with air)
*High cost for compounds with
sufficient purity



Other thin film “growth” techniques

electroplating Spin coating
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Materials Characterization Techniques

*Scanning Tunneling Microscope (STM)
sTransmission Electron Microscope (TEM)
«Scanning Electron Microscope (SEM)

*Atomic Force Microscope (AFM)
and Scanning Probe Microscope (SPM) in general



Scanning Tunneling Microscope (STM)

A 3D rendering of the STM setup
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Measures the tunneling current. topographic information abstained from
the feedback signal in constant current mode.



Scanning Tunneling Microscope (STM)
Manipulate individual atoms

MANIPULATION M

 IMAGING MODE

OOOCO000 COOOKX

SURFACE SURFAC

Images from Eigler at B




Atomic Force Microscope (AFM)

cantilever




Non-contactmode:
Van der Waals, electrostatic, magnetic or capillary forces

Contact mode:
lonic repulsion forces
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Dynamic contact (taping mode): Amplitude decreases at fixed frequency

Feedback loop keeps the amplitude constant. Signal from the feedback loop
reflects force information, which depends on the materials, etc, and can be
converted to height information.



Atomic Force Microscope (AFM)

Images from Hafner and Lieber.
la

*AFM allows imaging of surface topography with subnm
hight resolution, and lateral resolution limited by radius
of curvature of tip.

* resolution ~ 1nm is possible with smaller, eg, carbon
nanotube tips,!



Electrostatic Scanning Force
Microscopy (EFM)

Topographic AFM image




Magnetic Force Microscope (MFM)

MFM image of nanomagnets.  MFM image of recorded bits on
Bright area (north pole) thin-film disk recording media. The

Dark area (south pole) region imaged is 15x15
micrometers in dimension.



Scanning Gate Method

AFM Cantilever

Quantum Point
Contact (QPC) Gate .
Two-dimensional Charged AFM tip acts as a

Electron Gas (2DEG) mobile gate.
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Transmission electron microscope (TEM)

Comparison between a TEM and a slide projector.



(Bright field) imaging vs.
diffraction

Obtaining the (a) projected
image and (b) diffraction
pattern of the sample
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TEM examples
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TEM examples

Sb-doped Si Undoped Si

Voyles, P. M. et al. Nature 416, 826-829 (2002)

Single dopant study using z-contrast imaging. Ultrathin sample (5nm)



Scanning electron microscope (SEM)

Electrons are produced with Electron Gun
an electron gun, similar to
the one in a television.
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SEM examples

Cat flea, X750




(Device) Fabrication

*Photo lithography A
*E-beam lighography ~  top-down
*Nanoimprint lithography J

«Self-assembly

«Direct growth of nanostructures in solution ~ ~  bottom-up

*Direct growth of nanostructures with CvD  _



Photolighography
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Figure 3: Lithography methods:
{a) contact,

(b) proximity and

(¢) projection lithography.



e-beam lithography
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e-beam lithography

1) Expose

Electron Beam

«low sensitivity Smallest feature size ~20-50 nm,
determined by backscattered
electrons.

Serial process.
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Imprint lithography
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Imprint lithography

Jim Heath group, Caltech



Self-assembly
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Two chemically distinct polymers mixed together.



Self-assembly

LN

& 2
HOS A 74
& &6 50
et | ! RS

stripe patterns result from repulsion between the two halves of each
polymer molecule. Regular pattern developed after annealing since to
obtain lower energy.



Self-assembly
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Templated assembly of metal lines

PS (dark)

I 50nm

PMMA
(light)

Nature, 414, 735 (2001)




Self Assembly of Semiconductors

AFM image

GaAs n+ contact
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S.1. GaAs Substrate

InGaAs islands on GaAs

SiGe islands on Si

Prof. Bhattacharya group, EECS

growth: competition between strain energy and surface energy



Self Assembly of Metal Lines

Dysprosium Silicide nanowires on Si

Image from Stan Williams at HP Labs.

*A giant number of nanostructures is
formed in one simple deposition step.
*The synthesized nanostructures can
reveal a high uniformity in size and
composition.

*They may be covered epitaxially by host
material without any crystal or interface
defects.



Self assembly of nanostructures

ZL. Wang group, Georgia Tech



Grow nanostructures in solution

Nature, 437, 121 (2005)



Growth of semiconductor nanowires via catalyst mediated CVD
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++ Catalyst mediated CVD process
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Growth of carbon nanotubes




