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Homework 3 Solutions   DRAFT EECS  651 Jan. 31, 2001

1. (Problem 11.12,  p. 403, from Gersho and Gray).  A 2-codeword 4-dimensional VQ is to be designed.
The distortion measure is Hamming:  d(x,y) = 1 if x≠y,  d(x,y) = 0 if x=y.  The distortion between
vectors is the average of the Hamming distortion between their components.  Apply the LGB algorithm to
the training sequence below

1111, 1110, 1110, 0001, 1001, 0001, 1000, 0010, 0001, 1101

Start with initial codebook  C1 = {w1, w2}  =  {1100, 0011}.  You will have to modify the LBG
algorithm to suit this new distortion measure.  That is, assume that in case of a tie in the distortion between
an input vector and two codewords, the training vector is assigned to  w1.  Also assume that in the case of
a tie in the centroid computation that a  0  is chosen.

Note that the distortion measure between vectors is

d(x,y) = 
1
4  dH(x,y)

where  dH(x,y)  =  # places in which x and y  disagree = Hamming distance between  x  and  y.
As mentioned in my email, we must first find optimality criteria.

Optimality Property 1.  Given a codebook  C = {w1, w2}  the best partition  S = {S1,S2}  has

S1 = {x:  dH(x,w1) ≤ dH(x,w2}  and  S2 = {x:  dH(x,w2) < dHH(x,y1}

In other words a vector  x  is quantized to the codevector that is closest in Hamming distance.  Note that
we don't need the 1/4's and that we have broken "ties" in favor of  w1.  Also, note that there is no reason
for a component of a codevector to have a value other than  0  or  1,  because such a value will always
cause distortion  1.  So from now on we make our codewords consist of  0's and 1's.

Optimality Property 2:    Given a partition  S = {S1,S2}, from basic estimation principles, the best
codebook is  C = {w1, w2},  where  wi  is the vector such that  E[dH(X,wi)|X∈ Si]  is minimized.  Note
that  E[dH(X,wi)|X∈ Si]  is the expected number of places where  X  and  wi  differ given that  X ∈  Si.
The resulting  wi  is again considered to be a "centroid".

In a training sequence design method instead of design we replace 2 with
2'.  Given a partition  S = {S1,S2} and a training sequence  {t1, …,tN},  the best codebook is

C = {w1, w2}  where  wi  is the "centroid" vector such that  1
N∑j=1

N  dH(tj,yi)  is minimized.  Specifically,

wi,j  is  0  if there are at least as many zero's in the jth position of training vectors as ones  and  wi,j = 1, if
there are more ones in the jth position of training vectors than zero's.  (Note that we broke ties as specified
earlier.)

The following table shows the operation of the training sequence method.  Each row (below the training
vectors) shows an "old codebook" on the left.  Then below each training vector is the index of the old
codeword to which it is closest in Hamming distance, with ties broken in favor of  w1.  This is, in effect,
the partitioning step.  Below that is the Hamming distance of this closest codeword.  Next the Hamming
distortion resulting from this codebook and partition is shown (the 1/4 factors have been omitted).
Finally, a new codebook computed as in 2' is given.  The new codebook becomes the old codebook on the
next line and the process is repeated until no improvement results.
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old
codebook training vectors

dist'n
old cdbk

new partn

new
codebook

w1 w2 1111 1110 1110 0001 1001 0001 1000 0010 0001 1101 c1 c2

1100 0011 1 1 1 2 1 2 1 2 2 1 1100 0001

2 1 1 1 2 1 1 1 1 1 12/10

1100 0001 1 1 1 2 2 2 1 2 2 1 1110 0001

2 1 0 0 1 0 1 2 0 1 8/10

1110 0001 1 1 1 2 2 2 1 1 2 1 1110 0001

1 0 0 0 1 0 2 2 0 2 8/10

(a)  The final codebook is:   {1110, 0001},  because after it produced this, it continued to produce it as the
next step.

(b)  The final average Hamming distortion is   D  =  
1
4 

8
10   =  

1
5  .

(Note that average Hamming distance is  
8

10 = 
4
5  .)

2. Consider the vector quantizer described by the following block diagram.  (This is a kind of vector
generalization of Problem 7 of the previous homework assignment.)

multiply by
matrix  A

X U U X̂"internal" VQ
k, M , S , C , Q

multiply by
matrix  A

I I I I
-1

=AX ^

The source random vector is  X = (X1,...,Xk)t  with pdf  pX(x).  The matrix  A  is a k × k  orthogonal
matrix, which means it has the properites that  A-1 = At,  the rows are orthonormal, the columns are
orthonormal, and  ||Ax|| = ||x||  for any  x (each of these properties implies the others).  From the diagram
we see that   U = AX,  Û = QI(U),  and  X̂ = A-1

 Û .

(a)  Find the codebook  C, partition  S, quantization rule  Q,  and rate of the overall quantizer in terms of
the matrix  A  and the corresponding properties of the internal VQ.

Codebook:  C  =  A-1 CI  =  {A-1w I,i :  i = 1,...,NI}

Partition:     S  =  A-1 SI  =  {A-1SI,i :  i = 1,...,NI}

Quantization rule:    Q(x)  =  A-1 QI(Ax)

Rate:      R  =  
log2 MI

k    =  RI

(b)  Show that the MSE distortion of the overall quantizer operating on  X  equals the distortion of the
internal quantizer operating on  U.

The distortion of the overall quantizer operating on  X  is

     DX(C)  =  
1
k E ||X-Q(X))||2  =  

1
k E ||A-1U-A-1QI(AX)||2  =  

1
k E ||A-1(U-QI(U))||2

 =  
1
k E ||U-QI(U)||2   =  DU(CI).
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(c)  Show that if the internal VQ is optimal for  U (meaning that for its size and dimension it has smallest
MSE),  then the overall VQ is optimal for  X, regardless of which orthogonal matrix is chosen.   (The
converse is also true, namely, if the overall VQ is optimal for  X,  then the internal is optimal for  U,  but
you don't have to show it.)

Proof by contradiction.  Suppose  CI  is an optimal VQ with rate  R  for  U.  Also suppose  C  is not
optimal for  X.  Then there must be a better VQ  C' with rate  R  such that  DX(C') < DX(C).  Let  C'I =
AC'  be a code of rate  R  for  U.  Then

DU(C'I) = DX(C') < DX(C) = DU(CI),

which contradicts the optimality of  CI  for  U.  Thus it must be that  C  is optimal for  X.

(d)  In conventional "transform coding", such as JPEG, a great deal of attention is paid to choosing the
orthogonal matrix.  Why is this?  (Property (b) seems to be saying that it doesn't matter.)

In ordinary transform coding, the internal quantizer consists of a bank of scalar quantizers.  In this case it
matters greatly what transform is chosen.  On the other hand a k-dimensional internal VQ could implicitly
include whatever transformation one would like to have, so the transform  A  has no effect on the best
possible performance.

(e)  Show that if  X  is multiplied by a constant  1/a > 0  before being multiplied by the matrix  A  and if the
output of the inverse matrix multiplier is multiplied by  a  in producing  X̂,  then the distortion of the
overall quantizer on  X  is  a2  times the distortion of the internal quantizer on  U.

Let  Q'  be the new quantization rule and Q be the rule found in (a).  Then

Q'(x)  =  a Q(1
a x) = a A-1 QI(1

a
  Ax)

DX(Q')  =  
1
k  E ||X-Q'(X)||2  =  

1
k E ||X-aQ(1

a X)||2

DX(Q')   =  
1
k E ||X-Q'(X))||2  =  

1
k E ||aA-1U-aA-1QI(

1
a AX)||2  =  

1
k a2 E ||A-1(U-QI(U))||2

=  
1
k a2  E ||U-QI(U) ||2   =  a2 DU(QI).

(f)  Assuming that the internal quantizer has point density  λΙ(x)  and inertial profile  mI(x),  find the point
density  λ(x)  and inertial profile  m(x)  of the overall quantizer in terms of  A  and the internal point
density and inertial profile.

Here we do not assume the factor  "a"  is used.  The point density is

λ (x)  ≅   
1

N vol(Sx)   =   
1

MI |A-1SI,Ax|
   =   

1
MI |SI,Ax|   =  λ I(Ax)

where  Sx  denotes the cell of the overall quantizer containing  x  and  SI,u  denotes the cell of the internal
quantizer containing  u.

The inertial profile is

m(x)  =  M(Sx)  =  M(A-1SI,Ax)  =  M(SI,Ax)  =  mI(Ax)
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3. Consider a wide-sense stationary, first-order autoregressive source of the form

Xn = ρ Xn-1 + Zn

where the  Zn's  are IID with zero means and where  Zn  is uncorrelated with  Xn-1, Xn-2, ... .  Show that

E Z2 = E X2 (1-ρ2) .

We have

E X2
n  =  E (ρ Xn-1 + Zn)2  =  ρ2 E X2

n-1 + 2ρ E Xn-1 Zn + E Z2
n

because the process is stationary  E X2
n   =  E X2

n-1 =  E X2  and  E Z2
n  = E Z2.  Since  Xn-1 and  Zn  are

uncorrelated and E Zn = 0,  we have   E Xn-1 Zn = 0.  Therefore, the above becomes

E X2 = ρ2 E X2 + E Z2

which implies

E Z2 = E X2 (1-ρ2)

4. Consider the scalar quantizer shown below, called a compander,  that quantizes by preceding the encoder
of an  M level uniform scalar quantizer with support  [0,1]  with a memoryless nonlinear function  c(x).
At the decoder, the output of the decoder for the uniform scalar quantizer is followed by the inverse of  c.
The levels and thresholds of the uniform scalar quantizer are distributed evenly over the interval [0,1].
The function  c  is nonnegative and montonically increasing, and it maps  (-∞,∞)  into  [0,1].  The plot
below the block diagram may help you to visualize the operation of the compander.

z = c(x)x

compressor uniform scalar
quantizer

expander

1

1

c(x) c  (z)-1

ẑ = Q  (z)
u x = Q(x) =  c  (z)^ ^-1

x
x
x
x

x x x x

c(x)∆=1/M

(a)  Find formulas for the levels  w1,...,wM  and thresholds  t0,...,tM  of the compander in terms of the
function  c.

The ith level of the uniform scalar quantizer is  vi =  
i

M - 
1

2M  and the ith level of the compander is

wi  =  c-1( i
M - 

1
2M),  i = 1,...,M

The ith threshold of the uniform scalar quantizer is   
i

M ,  ui = i = 1,...,M-1,  u0 = 0,  uM = 1.  The ith
threshold of the compander is

ti  =  c-1( i
M ),  i = 1,...,M  and  t0 = -∞, tM = ∞.

I'm using the convention that the thresholds are defined so that  Q(x) = wi if  ti-1 < x < ti.
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(b)  Assuming M  is large, find an approximate expression for the distortion of this quantizer in terms of
M, the function  c,  and the probability density of  X.  Simplify as much as possible  (Hint: It should be an
integral expression.)

Let's use Bennett's integral.  The dimension  k = 1.  The point density is

λ(x) = 
1
M 

1
ti-ti-1

   if  ti-1 < x < ti

Since  M  is large, we can ssume  
1
M  and  (ti-ti-1)  are small and we can use the approximation

c'(x)  ≅   
1/M
ti-ti-1

From this it follows  that

λ(x) ≅  c'(x)

To find the inertial profile we note that when  M  is large, the cells will be small and  c(x)  will be
approximately linear across one cell.  From this it follows that   wi  will be approximately in the center of
its cell.  From this it follows that the inertial profile is

m(x) ≅  
1
12

Substituting the point density and inertial profile into Bennett's integral gives

D  ≅   
1
1 2  

1
M2  ∫

-∞

∞
 

1
(c'(x))2   f(x) dx

(c)  Show that any scalar quantizer can be implemented with a compander, provided its levels lie within its
cells.

Let  w1,...,wM  and  t0,...,tM   be the thresholds of an arbitrary scalar quantizer with  ti-1 < wi < ti, i =
1,...,M.  We will design a compander that implements this quantizer.

Let  c(x)  be any continuous, monotonically increasing function that goes to zero as  x → -∞,  goes to one

as  x → ∞,  and such that  c(x)  passes through the following points:

(w1,
1

2M),  (t1,
1
M),  (w2,

3
2M),  (t2,

2
M),  (w3,

5
2M), ..., (tM-1,

M-1
M ), (wM,1-

1
2M) ,

i.e.  c  is chosen so that

c(wi) = 
i
M - 

1
2M   and  c(tt)  =  

i
M

Note that each point is to the right and above the previous points.  Therefore, there does indeed exist a
continuous function that passes through these points.  We can also choose it so that it goes to zero as x→-
∞  and so that it goes to one as  x → ∞.  Such a compander will implement the given quantizer because if

ti-1 < x < ti  then compressor mapping produces  c(x)  with  
i-1
M < c(x) < 

i
M,  so that the uniform quantizer

choose level  
i
M - 

1
2M  and the expander mapping produces  wi = c-1

 (
i

M - 
1

2M ).  The latter happens because

c  was chosen so that  c(wi) = 
i
M - 

1
2M .
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5. (a)  Use Bennett's integral and the results of Parts b and e of Problem 2 to predict the MSE of JPEG
applied to the image 'lena' with quality factor 1.  To do this you will need to know that JPEG has the form
shown in Problem 2 with the internal quantizer consisting of 64 uniform scalar quantizers with step sizes
shown in the table that was distributed and posted on the website.  The orthonormal transform is preceded
by multiplying by  1/a = 16  and the inverse transform is postmultiplied by  a.  (You might want to use
Matlab, Excel, or write a computer program to avoid a lot of repititious calculations.)

JPEG is a coder of the kind described in Part e of Problem 2.  Therefore,

DX(Q)  =  a2 DU(QI),

where  Q  denotes the overall effect of JPEG quantization,  a = 1/16,  U = DCT(X),  and  QI  denotes the
quantization of the DCT coefficients in  U = (U1,...,U64).   We now compute

DU(QI)  =   
1
64  E||U-Û||2   =   

1
64  E ∑

j=1

64

 (Uj-Qj(Uj))2   =   
1

64   ∑
j=1

64

 E (Uj-Qj(Uj))2

where  Qj  denotes the quantization done by JPEG to the jth coefficient.  According to how JPEG operates
Qj  is a uniform scalar quantizer with step size  ∆j = Mj  where  Mj  is the jth element of the quantization
matrix.  As derived in class using Bennett's integral

E (Uj-Qj(Uj))2  ≅   
∆2

j
12   =  

M2
j

12

Therefore,  our prediction is

DX(Q)  =  a2 DU(QI)  ≅   
1

256   
1
64

  ∑
j=1

64

  
M2

j
12    =   1.464

(b)  Compare to the actual distortion of JPEG running on 'lena' with quality factor 1.

The actual MSE on lena is   D = 0.0925.

The considerable difference between this and the actual value is due to the fact that most of the  Mj's   are
not small relative to the standard deviation of the variable being quantized.  Indeed, most of the coefficients
have quantization step sizes much much larger than the typical value of the coefficient being quantized.
The formula for  D  predicts the distortion for coefficient  Uj  to  be  M2

j /12  when in fact because  Uj <<
Mj, most values of the time  Uj  is quantized to  0  and the distortion is approximately  E[(Uj)2] <<
M2

j /12.


