Homework 5 Solutions EECS 651 Mar. 9, 2001

1. Abinary 1D source hasp(0) = .995 and p(1)=.005.
() Find a fixed-to-variable length block lossless source code with rate no larger than 0.4. (It should be as
simple as possible.)
"Assimple as possible" trandates to "with as small ablocklength k as possible”. So we start with
blocklength k =1 and keep increasing k until we find acode with rate .4 or less.
For k=1, abest codeis {0,1} withrate R = R; =1, whichistoo large.
For k =2, the best codes haverate R =.5, whichistoo large.

For k = 3, the best codes, see for example the code below, haverate R =.33 < .4 sothisisthe simplest
code that meets the specification of the problem.

U1 Uo U3 p(uq,Us,u3) codeword
000 .985 0
001 .00495 10
010 .00495 110
011 .000241 111100
100 .00495 1110
101 .00241 111101
110 .00241 111110
111 1.25 x 107 111111

(b) Isit possible to find a fixed-to-variable length block lossless source code with rate less than .1? 1f so,
what can you say about how large itsinput block length must be?

Y es, because the source entropy H is .045, whichislessthan .1.

Its blocklength must be at least 4 because k =1,2,3 do not giverate lessthan .1. The source length need
not be larger than 19 because R;q <H +1/19=.0976 < 1. Wedon't know if k = 18 will work because
R,g <H+1/18=.1006. Thuswithout going to the trouble of following the procedure in part (a), we can
say that the smallest sourcelengthiis at least 4 and no larger than 19.

Moreover, we also know that L isaways greater than one, and so for any code R=L/k > 1/k. Thus, if
k <10, the R>.1. Hence, the best boundsto the smallest value k, denoted kmin are

2. Supposewe aretold that a certain stationary source {Xy} with alphabet A= {1,2,....M} has
R;= .95 and R, = .92

*
where Ry denotesthe least rate of any block to variable length prefix code with input blocklength k.
What can you deduce about the values of H,, and Hy for k= 1,2,3,... ? In other words, using the given
information, find the tightest possible boundsto H., and to each Hy.

We need to find upper and lower bounds to each Hy. And we need to make them astight as we can, given
that we know only that R; =.95 and R, =.92. We can make use of the following facts:

(@ Hg < R*k < Hk+% (equivalently, R*k-% < Hg < RL)
(b) O < Hk+1 < Hk < logo M for every k

For k=3, (8 O .62<H3z<.95. For k=4, (@ O .67<Hz<.92

We can also get atighter lower bound on Hsz, since H3 = Hg > .67.
For k =1, we only know .67 <Hz < Hj <logy M. And the same holdsfor k =2.



For k=5, weonly know 0<Hg<Hz<.92.
In summary, the tightest bounds are

67 < Hp <logy M, .67 <Hp <logy M, .67 < Hz < .95 .67 < Hyg < .92,
0<Hk=<.92 k=5
. Consider the "runlength” code shown below. Thisis a variable-length to fixed-length code, unlike the

fixed-length to variable-length we have considered in class. Let the source be 11D sourcewith p(0) = .995
and p(1)=.005

source sequence  run length binary codeword

1 0 000

01 1 001

001 2 010
0001 3 011
00001 4 100
000001 5 101
0000001 6 110
0000000 7 111

(&) Explainwhy this code is uniquely encodable and decodable.

Let us cal the sequencesin the left column "source words®. Notice that the source words are prefix free.
Notice also that every for every infinite binary sequence there is one and only one source word that prefixes
it. Thismeansthat every infinite source sequence can be parsed in one and only one way into source
words. Thusit can be encoded in one and only oneway, i.e. it is"uniquely encodable".

The binary codewords are prefix free. Therefore, the code is uniquely decodable in the usual sense.
(b) Find the average length of the encoded source sequences.

Let p=p(0). The probability of the source sequence with i O'sfollowed by alis pi(1-p), i =0....,6.
The probability of the source sequence with 7 0's is p’. The average length of the source sequenceis

_; (i+1) pi(1-p) + 7 p’ = 6.90

i=0

(c) Findtherate of this code.

Therate of the code istheratio of the average number of bits coming from out of the encoder to the averge
number entering. Therefore,

_ 3 _
rate = m = 435

(d) Compare the rate and complexity of this code to that found in Problem 1a.

Rate: The codein Problem 1a has smaller rate.

Complexity: The code in Problem 1a has 8 codewords, which must be stored at both the encoder and
decoder. The codein this problem aso has 8 codewords. However, they need not be stored because they
have an obvious pattern so the storage complexity is essentially zero. The encoder in Problem 1aand the
decoder in this problem require no computation. The decoder for the code in Problem 1a must keep
checking the received bitsto see if they match a codeword. The encoder in this problem need only count the
number of zeros until aone occurs. So the encoder in this problem is much simpler than the decoder in
Problem 1a. The complexity advantages of runlength coding becomes larger as one demands lower rate,
which in Problem lais obtained by increasing the blocklength and which in this problem is obtained by
increasing the blocklength of the output codewords (equivalently the maximum allowable runlength).



4. Not required.

5. Assume high ratein this problem.

(& Show that when first-order (n=1) variable-rate coding is applied to scalar quantizerswith levelsand
thresholds that are optimal for fixed-rate coding, then the SNR gain will be two-thirds the SNR gain of
optimal SQ-VR (n=1) over optimal SQ-FR.

First, the SNR gain of SQ-VL over optimal SQ-FL at somerate R is 10Iogloﬁ,
n
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Now lets find the gain obtained by applying variable-rate coding to a quantizer 7pt| mized for fixed-rate
coding. A scalar quantizer optimized for FLC has point density A(x) = fU3(x)/ [ f1/3(x) dx.
When used with VLC it hasrate

R O h+ [f(x) logz A(x) dx
and distortion

D D— If(x)

()

where A(X) isthe unnormalized point density, which is proportional to A(x). Solet usassume A(x) =c¢
fU3(x) where c isaconstant that we can vary so that the rate is a desired value. Then substituting this
into the expressionsfor R and D gives

R Oh+ [f(x)logzcfl/3(x)dx = h+ [f(x)logo cdx+ [f(x) loga fL/3(x) dx

- -Ioof(x)long(x) dx +logpc+ = ;o(x) log2 f(x) dx = 5h+logzc
and N B
D 0 [0 gy = b [P 8= O
From the expression for R we have ¢ = 2 gh and substituting thisinto the expression for D givesan

expressionfor D vs. R:
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Therefore the gain over optimal SQ-FL is
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which is 2/3's of the gain of optimal SQ-VL over optimal SQ-FL.

(b) For Gaussian and Laplacian densities, make a table of the SNR gains of VR coding applied to optimal
FR quantizers over the performance of optimal FR quantizers, and also for the gains of optimal SQ-VR
(n=1) over optimal SQ-FR.



Table of gains VLC of opt'l FL-SQ opt'l SQ-VL

over FLC of opt'l FL-SQ over opt'l SQ-VL
Gaussian 1.87 dB 2.81dB
Laplacian 3.75dB 5.63 dB

. (&) Find a high-resolution expression for the probability of the cell containing x assuming the quantizer is
optimized for variable-rate coding and qualitatively compare the expression to that for fixed-rate coding.

If the quantizer is optimized for variable-rate coding, then the point density is a constant, namely,
/\(X) - /\; - 2k(R'hkn)

Thismeans that all cells have essentially the same volume. Therefore, the probability of the cell S

containing x isproportional to p(x). Specifically, [Sy| O KRNk g
-k(R-h
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In comparison for fixed-rate coding,
- 2(k+2
PrS) 0 pe) 14 0 px) o pe™®2 = & peo®?

Since the exponent 2/(k+2) for fixed-rate coding islessthan that for ariable-rate coding, the cell probabili-
ties for fixed-length coding tend to be more nearly equal than for variable-rate coding. This causesthe
entropy of quantizer designed for variable-rate coding to be smaller than the entropy of the quantizer
designed for fixed-rate coding.

(b) Repeat the above with "probability" replaced by "distortion contribution”.
The distortion contribution of thethe cell Sx for quantizer optimized for variable-rate coding is:
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In comparison for the quantizer optimized for fixed-rate coding

]k-s’L”X-Q(l')”z p(x) dx' 0 p(o) P my

Whereas for the quantizer optimized for fixed-rate coding, all cells contribute equally to the distortion, for
the quantizer optimized for variable-rate coding, the contribution to distortion is proportiona to p(x).

. Show that for scalar quantizers optimized for variable-rate coding, the levels should be centroids but the
thresholds need not be halfway between the levels.

Given a set of thresholds, the choice of levels affects the distortion but not the rate. Therefore, in an optimal
quantize the levels must be chosen to minimize distortion, which we know means they should be centroids.

We use a counterexampl e to show that the thresholds need not be halfway between the levels. Consider a
quantizer optimized for quantizing an exponential density p(x) =€ x = 0, with variable-rate coding . Let
the rate belarge. We know that the quantizer has approximately a constant point denstiy. Thusthe cells
should al have the approximately the same width, say A. We also know the levelswill be the centroids.
Since the density is exponential the centroid will be in the same relative position within each cell and this
position isto the left of the cell center. Let'ssay itisat distance & from the left boundary of the cell, where
0<d<A/2. Itisnow evident that each threshold is at distance & from the next level and distance A-d
from the previouslevel. Since d # A/2, the threshold is not halfway between two levels.



