Homework 7 Solutions EECS 651 March 26, 2001

1. Avariable-rate k-dimensional transform codeis optimized for rate R and for a zero-mean, stationary
Gaussian source. Assume R islarge.

(8 Show that its point density isthe optimal point density for variable-rate k-dimensional vector
guantizerswith n=1.

Wefirst find the point density for an optimal transform code. When atransform code is optimized for a
Gaussian random vector X andrate R, thetransform T isthe KLT, and theith quantizer isuniform
with distortion
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We also know D Dﬁ. Equating the two expressionsfor Dj shows that the ith quantizer has step size
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and its point dens ty (unnormalized, since variable-rate coding is used) is
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If we consider how the coefficient vector U = TX isquantizedinto V weseethat U isquantized with a
product quantizer, whose point density is
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(noticethat it is constant with U)

Finally, the point density of the transform codeis
A(X) = Ay(Tx) (seeProblem 2f, HW Set 3)
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In comparison the point density of a quantizer optimized for variable-rate coding withn=1, is
Ax) = 2R (12 of the notes on VQ-EC)
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which isthe same as the point density of the optimized transform code.
(b) Finditsinertial profile.

The product quantizer that effectively quantizes U has cubic cells, because each uniform scalar quantizer
has the same step size. Therefore, itsinertial profileis

1
my(u) =75
From Problem 2f, HW Set 3,

m(x) = my(Tu) = 15



2. (a) Derivethe OPTA function for large rate and k-dimensional transform coding in which the scalar
guantizers are replaced by two-dimensional vector quantizers. That is, onevqisappliedto (Uq,U2),
ancther isappliedto (U3,U4), and so on. Assume K iseven, and assume the sourceis zero mean,
stationary and Gaussian. Your answer should include both the fixed-rate and variable-rate cases. You
may parallel the derivation given in class, and you may use without rederivation any fact that was proven
in classwhichis useful here. (Just remember to state the fact that you are using.)

Let T bean orthogona transform, let U =(U1,...,Ux) = TX bethe vector of coefficients. Weaso
write U = (U1, Up, ..., Uk/2) where Ui = (Uj 1,Uj 2) istheith pair of coefficients. That is, Ui =
(U1,U2), Us=(U3,Uy), ..., U2 = (Uk-1,Ux). Let Q; denote the 2-dimensional vq applied to U;.
Then, the distortion and rate of atransform code with two-dimensional vector quantizers applied to
successive pairs of coefficients are
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where Dj(Q;) and Ri{(Q;) arethedistortion and rate, respectively of Q; appliedto U;.

Given some set of Rj's to be determined later, the vg's should have ratesat most R; and distortion
equal to the optafuncion 9j(2,R;) for 2-dimensional vq (either fixed-rate or variable-rate) applied to U,
where
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Kgi isthe 2x2 covariance matrix of Uj
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It follows that when the 2-dimensional vector quantizers are optimized for agiven transform T and a
givenrate R, then
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We have the same sort of thing here, except k isreplaced by k/2 and 12 |°" isreplaced by

m2 oG |Ki| . Theresultis
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It remains only to choose the transform to minimize |‘| |KU |- 1 will show that the KLT does this.

First, consider this product for the KLT. When T |sthe KLT, the componentsof U areuncorrelated,
so the components of each U; are uncorrelated, so KQi isadiagonal 2x2 matrix with

Kyl = Ky(1,0) Ky (22) = varUjavar(u; )

It follows that
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Now suppose T isany arbitrary orthogonal transform. We will create another orthonormal transform T
whose product isthesameas T and at least aslarge asthat of the KLT, which will demonstratethat T is
not better than the KLT. Accordingly, given some T, each 2-dimensional vector of coefficients U; may
have correlated components, i.e. Uj 1 and Uj 2 may be correlated. However, after computing U = TX,
one can apply an orthogonal 2x2 transform $; to U; such that U1 =S Uz hasuncorrelated
components. One can similarly apply an orthogonal 2x2 transform Sy to U to obtain Us =Sy Uy with
uncorrelatd components, and so on. Overall we create a new transform T thet produces

g = (Dl,,ok) = (glalgk/Z) = TK;
whereeach U; has uncorrelated components. Itiseasy toseethat [[U|| = U]l = |[X||. Therefore, T is

orthogonal. Let KQi denote the covariance matrix of Qi. As discussed in class, the facts that Qi =S U
and S isorthogonal imply

|Kuj|=|KQi|:KQi(1’1) Ku;i(22) wherethelast equality isbecause Ky; isdiagonal.

It now follows that
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where the inequality is from Fact 6, p. 26 of the transform coding notes, and the last equality isfrom Fact
ki2
8, p. 26. Wenow seethat the KLT minimizes [7 |Kuj|.
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Substituting ﬁlKQ]l = |K] into (**), givesthe opta function for transform coding with two-
dimensional vg's

Stranst(R) = myag [K| 2727
Ngticethat thisonly differsfrom trle optafunction for transform coding with scalar quantization in that
m, = 1/12 has been replaced by m, .
(b) Would the OPTA function change if instead of applying 2-dimensional vg'sto (U1,Up), (Uz,U4),
oen applied two-dimensional vg'sto (Uq,Uy), (Uz,Uk-1), ... ?

No. Since the minimal distortion again depends only on the product of the eigenvalues, it does not matter
how coefficients are paired.



3. (@) Design and describe a fixed-rate DPCM code with rate 3 and with a linear predictor of order two, for
a zero-mean, stationary Gaussian source with autocorrelation function:

_ 1281 64 1

Rx(K) = 105 4l * 21 0
The distortion should be as small as you can makeit. Hints: In designing the code, you may use the
assumptions we used in our high resolution analysis, and you may use the scalar quantization table that
was used in the previous homework.

We describe the DPCM code X

by describing the predictor,
guantizer and binary decoder.
Theblock diagramis:

We will follow the high-
resolution design procedure described in class.

We choose the predictor to be the optimal linear predictor for X; from Xj.1, Xj-2. Thisis
Xi=a Xj-1 + & Xj-2
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Inverting K gives K ™= 64 023 1 [ and solving for the predictor coefficients gives

1 [3l4
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TheresultingMSEis My=02-ar =1.

We now choose the quantizer to be the optimal rate 3 scalar quantizer for Di = a1 Xj.1 + a Xj.2 whichis
Gaussian with zero mean and variance equa to Mo=1.

From the optimal quantizer tables, we find that the quantizer should have:
levels: -2.152, -1.344, -0.756, -0.245, 0.245, 0.756, 1.344, 2.152
thresholds: -o, -1.748, -1.050, -0.501, 0.0, 0.501, 1.050, 1.748, oo
The binary encoder assigns binary sequences of length 3 to the quantization cellsin some arbitrary order.

(b) Thispartisnot required and will not be graded. Show that a DPCM code with a higher order
predictor would do no better.

One can use the optimality property. One merely hasto check that
E (Xi - 3 Xi-1+ 5 Xi-2)Xij =0 for j=3,4,5, .
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It turns out that thismeansthat X isasecond-order AR process, i.e. Xj= a Xi-1 - 8 Xi2 + Zi,
where Zj's arelID Gaussian with mean zero and variance 1.

(c) Thispartisnot required and will not be graded. Find, approximately, the OPTA function assuming
no regtriction on the order of thelinear predictor.

Since higher-order predictors are no better, the OPTA function is the same as for part (a) namely,

ddpem(R) = % x 326 x 1x 272R



