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Homework 7 Solutions EECS  651 March 26, 2001

1. A variable-rate k-dimensional transform code is optimized for rate  R  and for a zero-mean, stationary
Gaussian source.  Assume  R  is large.

(a)  Show that its point density is the optimal point density for variable-rate k-dimensional vector
quantizers with  n=1.

We first find the point density for an optimal transform code.  When a transform code is optimized for a
Gaussian random vector  X  and rate  R,  the transform  T  is the KLT,  and the ith quantizer is uniform
with distortion

Di  ≅   δtransform(k,R)  ≅   1
12 |KX|1/k

  ηG,1  2
-2R
    (it's the same for all  i)

We also know  Di ≅  
∆2

i
12.  Equating the two expressions for  Di  shows that the ith quantizer has step size

∆i   =  |KX|1/2k
  (ηG,1)1/2

   2
-R
     (same for all  i)

=   |KX|1/2k
  (2πe)1/2

   2
-R
    since  ηG,1 = 2πe  (see Prop. 4, p. 27 of lectures on VQ with EC

and its point density (unnormalized, since variable-rate coding is used) is

Λi(u)  =  
1

∆i
   =   |KX|-1/2k

  (2πe)-1/2
   2

R
     (same for  all, and constant with  u)

If we consider how the coefficient vector  U = TX  is quantized into  V  we see that  U  is quantized with a
product quantizer, whose point density is

ΛU(u)  =  Λ1(u1) Λ2(u2) ... Λk(uk)       (product quantizers have product point densities.)

=   |KX|-1/2
  (2πe)-k/2

   2
kR
 

      (notice that it is constant with  u)

Finally, the point density of the transform code is

Λ(x)  =  ΛU(Tx)     (see Problem 2f, HW Set 3)

   =  |KX|-1/2
  (2πe)-k/2

   2
kR
 

In comparison the point density of a quantizer optimized for variable-rate coding with n = 1,  is

Λ(x)  =   2k(R-hk)
 

       (p. 12 of the notes on VQ-EC)

    =  |KX|-1/2
  (2πe)-k/2

   2
kR
 

       since    hk = 
1
2  log2 2πe|K|1/k

 

which is the same as the point density of the optimized transform code.

(b)  Find its inertial profile.

The product quantizer that effectively quantizes  U  has cubic cells, because each uniform scalar quantizer
has the same step size.  Therefore, its inertial profile is

mU(u) = 
1
12

From Problem 2f, HW Set 3,

m(x) = mU(Tu) = 
1
1 2
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2. (a)  Derive the OPTA function for large rate and k-dimensional transform coding in which the scalar
quantizers are replaced by two-dimensional vector quantizers.  That is, one vq is applied to  (U1,U2),
another is applied to  (U3,U4),  and so on.  Assume  k  is even, and assume the source is zero mean,
stationary and Gaussian.  Your answer should include both the fixed-rate and variable-rate cases.  You
may parallel the derivation given in class, and you may use without rederivation any fact that was proven
in class which is useful here.  (Just remember to state the fact that you are using.)

Let  T  be an orthogonal transform, let  U =(U1,...,Uk)  = TX  be the vector of coefficients.  We also
write  U = (U1, U2, ..., Uk/2)  where  Ui = (Ui,1,Ui,2)  is the ith pair of coefficients.  That is,  U1 =
(U1,U2),  U2 = (U3,U4), ..., Uk/2 = (Uk-1,Uk).   Let  Qi  denote the 2-dimensional vq applied to  Ui.
Then, the distortion and rate of a transform code with two-dimensional vector quantizers applied to
successive pairs of coefficients  are

D = 
2
k  ∑

i=1

k/2
 Di(Qi)   and  R = 

2
k ∑

i=1

k/2
 Ri(Qi)

where  Di(Qi)  and Ri(Qi)  are the distortion and rate, respectively of  Qi  applied to  Ui.

Given some set of  Ri's   to be determined later,  the vq's should have rates at most  Ri  and distortion
equal to the opta funcion  δi(2,Ri)  for 2-dimensional vq (either fixed-rate or variable-rate) applied to  Ui,
where

δi(2,Ri)  =  m*
2 

~
 σ

2
i  α i 2

-2Ri
 

,     m*
2  = .0802 ,   

–
 σ

2
i  = 

1
2 (var(Ui,1) + var(Ui,2))

∗∗∗ α i  =  
1

–
 σ

2
i

 αG |Ki|
1/2
 ,  αG = { 

2π 4, fixed rate coding
2πe = 17.1, variable-rate coding

KUi  is the 2×2 covariance matrix of  Ui

 =  m*
2 |KUi|

1/2
  αG 2-2Ri

 

It follows that when the 2-dimensional vector quantizers are optimized for a given transform  T  and a
given rate  R, then

D   =       min           2
k
  ∑

i=1

k/2
 δi(2,Ri)      =        min       2

k
  ∑

i=1

k/2
   m*

2 αG |KUi|
1/2
  2-2Ri

 

R1,...,Rk: 
2
k

 ∑
i=1

k/2
 Ri ≤ R           R1,...,Rk: 

2
k

 ∑
i=1

k/2
 R≤ R

In class we minimized:  1
k
 ∑
i=1

k
  1

12
 σ2

i α i 2
-2Ri
 

    subject to    1
k
 ∑
i=1

k
  Ri = R,

and found   Ri  =  R +  
1
2  log2 

σ2
i α i

 


 
∏

j=1

k
 σ2

j α j
1/k

   and   D  ≅  
1
12    


 
∏

j=1

k
 σ2

j α j

1/k
 2-2R

 

We have the same sort of thing here, except  k  is replaced by  k/2  and  1
12

 σ2
i αi  is replaced by

m*
2 αG |Ki|

1/2
 .  The result is

Ri  =  R +  1
2
  log2 

|KUi|
1/2

 


 
∏

j=1

k/2
 |ΚUj|

1/2 2/k

and
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D  ≅   m*
2 αG  

 


 
∏

j=1

k/2
 |ΚUj|

1/2
2/k

 2-2R
     =  m*

2 αG  
 


 
∏

j=1

k/2
 |ΚUj|

1/k
 2-2R

 (**)

It remains only to choose the transform to minimize  ∏
j=1

k/2
 |ΚUj|.  I will show that the KLT does this.

First, consider this product for the KLT.  When  T  is the KLT,  the components of  U  are uncorrelated,
so the components of each  Uj  are uncorrelated,  so  KUi   is a diagonal 2×2 matrix with

|KUj| = KUj(1,1) KUj(2,2)  =  var(Uj,1)var(Uj,2) .

It follows that

 ∏
j=1

k/2
 |ΚUj|  =   ∏

j=1

k
 var(Uj)  =  |K|.

Now suppose  T  is any arbitrary orthogonal transform.  We will create another orthonormal transform  
~
 T

whose product is the same as  T  and at least as large as that of the KLT, which will demonstrate that  T  is
not better than the KLT.  Accordingly, given some  T,  each 2-dimensional vector of coefficients  Ui  may
have correlated components, i.e.  Ui,1 and Ui,2  may be correlated.  However, after computing  U = TX,
one can apply an orthogonal 2×2 transform  S1  to  U1  such that  

~
 U1 = S1 U1  has uncorrelated

components.  One can similarly apply an orthogonal 2×2 transform  S2  to U2 to obtain  
~
 U2 = S2 U2  with

uncorrelatd components,  and so on.  Overall we create a new transform  
~
 T  that produces

 
~
 U = (

~
 U 1,...,

~
 Uk) = (

~
 U 1,...,

~
 Uk/2) = 

~
 T X,

where each  
~
 Ui  has uncorrelated components.  It is easy to see that   ||

~
 U|| = ||U|| = ||X||.   Therefore,  

~
 T  is

orthogonal.  Let  K~
 Ui  denote the covariance matrix of  

~
 Ui.  As discussed in class, the facts that  

~
 Ui = Si U

and  Si  is orthogonal imply

 |KUj| = |K~
 Ui| = K~

 Ui(1,1)  K~
 Ui(2,2)   where the last equality is because  K~

 Ui  is diagonal.

It now follows that

 ∏
j=1

k/2
 |ΚUj|  =  ∏

j=1

k
 K~

 U
(j,j)  ≥  |K~

 U
|  =  |K|.

where the inequality is from Fact 6, p. 26 of the transform coding notes, and the last equality is from Fact

8, p. 26.  We now see that the KLT minimizes   ∏
j=1

k/2
 |ΚUj|.

Substituting  ∏
j=1

k/2
 |ΚUj|  =  |K|  into (**),  gives the opta function for transform coding with two-

dimensional vq's

δtransf(R)  =  m*
2 α G   |K|  2- 2 R

  .

Notice that this only differs from the opta function for transform coding with scalar quantization in that
m*

1 = 1/12 has been replaced by  m*
2 .  it also differs by the α  term

(b)  Would the OPTA function change if instead of applying 2-dimensional vq's to  (U1,U2),  (U3,U4),
oen applied two-dimensional vq's to  (U1,Uk),  (U2,Uk-1), ... ?

No.  Since the minimal distortion again depends only on the product of the eigenvalues, it does not matter
how coefficients are paired.
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3.  (a)  Design and describe a fixed-rate DPCM code with rate  3  and with a linear predictor of order two, for
a zero-mean, stationary Gaussian source with autocorrelation function:

RX(k)  =  -128
105   

1

4|k|  +  
64
21  

1

2|k|  .

The distortion should be as small as you can make it.  Hints:  In designing the code, you may use the
assumptions we used in our high resolution analysis, and you may use the scalar quantization table that
was used in the previous homework.

We describe the DPCM code
by giving a block diagram and
by describing the predictor,
quantizer and binary decoder.
The block diagram is:

We will follow the high-
resolution design procedure described in class.

We choose the predictor to be the optimal linear predictor for  Xi  from  Xi-1, Xi-2.  This is

Xi = a1 Xi-1 + a2 Xi-2

where     a = (a1,a2)t = K-1
  r ,    K =   


 
RX(0) RX(1)

RX(1) RX(0)
  =  

64
35   


 
1 2/3

2/3 1
,      r  = [ ]RX(1)

RX(2)  =  
8

105 [ ]16
9

Inverting  K   gives  K-1
   =  

6 3
64   


 
1 -2/3

-2/3 1
     and solving for the predictor coefficients gives

a = K-1
  r   =  [ ]3/4

-1/8 .

The resulting MSE is    M2 = σ2 - at r  = 1 .

** We now choose the quantizer to be the optimal rate 3 scalar quantizer for  
~
 Ui = Xi - a1 Xi-1 + a2 Xi-2

which is Gaussian with zero mean and variance equal to  M2 = 1 .

From the optimal quantizer tables, we find that the quantizer should have:

levels:   -2.152, -1.344, -0.756, -0.245, 0.245, 0.756, 1.344, 2.152

thresholds:  -∞, -1.748, -1.050, -0.501, 0.0, 0.501, 1.050, 1.748, ∞

 The binary encoder assigns binary sequences of length 3 to the quantization cells in some arbitrary order.

(b)  This part is not required and will not be graded.  Show that a DPCM code with a higher order
predictor would do no better.

One can use the optimality property.  One merely has to check that

E (Xi - 
3
4 Xi-1 + 

1
8 Xi-2)Xi-j = 0  for  j = 3, 4, 5, ...

It turns out that this means that  X  is a second-order AR process, i.e.  Xi = 
3
4 Xi-1 - 

1
8 Xi-2 + Zi,

where  Zi's  are IID Gaussian with mean zero and variance 1.

(c)  This part is not required and will not be graded.  Find, approximately, the OPTA function assuming
no restriction on the order of the linear predictor.

Since higher-order predictors are no better, the OPTA function is the same as for part (a) namely,

δdpcm(R)  =  
1
1 2  × 32.6 × 1 × 2- 2 R

  .


