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VECTOR QUANTIZATION (VQ)

Introduction
Consider an arbitrary fixed-rate lossy source code that operates independently on
blocks (vectors) of  k  real-valued samples:  k samples into encoder,  L bits out

encoder decoder
Y1...Yk

bits
X1...Xk

samples reproductions
Z1...ZL

• source coder  =  encoder + decoder
• encoder and decoder are described by functions called encoding rule and decoding

rule, respectively
• the sets of all possible encoder outputs and all possible decoder outputs play

important roles
• the partition induced on space of k-dimensional input vectors plays an important role
• a lossy source code that operates independently on fixed-length blocks, producing

fixed-length blocks of bits is called a
fixed-rate (memoryless) vector quantizer  (VQ)

• fixed-rate VQ is a very general paradigm that includes many lossy source codes as
special cases, e.g. fixed-rate transform coding.  Since it is quite generable and also
analyzable, it provides an excellent framework for studying lossy source codes.

• JPEG has variable, not fixed, rate.  Except for the encoding of dc coefficients, it
operates independently on bocks of 64 pixels. (It's a variable-rate VQ with memory.)



2

encoder decoder
Y1...Yk

bits
X1...Xk

samples reproductions
Z1...ZL

KEY CHARACTERISTICS  (high-level, input-output)

Dimension:  k

Encoding rule:   e:  Rk
  → {0,1}L 

Z1…ZL = e(X1…Xk),

ZL+1…Z2L = e(Xk+1…X2k),

Z2L+1…Z3L = e(X2k+1…X3k), ...

Binary codebook:

Cb = {e(x):  x ∈  Rk
 } =  {c1, c2, …, cM}

where   ci = (ci1, ci2, …, ciL)

 =  ith binary codeword

Size of code:  M

Decoding rule  d:  Cb → Rk
 

Y1…Yk = d(Z1…ZL),

Yk+1…Y2k = d(ZL+1…Z2L),

Y2k+1…Y3k = d(Z2L+1…Z3L), ...

(Quantization) Codebook:

C =  {d(c1),d(c2), ..., d(cM)}

=  {w1, w2,…,wM}

where  wi = (wi1,…,wik) = ith codevector
(code/reproduction, vector/point)

Quantization rule:  Q: Rk
  → Rk

 

Q(x) = d(e(x)) = reproduction produced
by decoder for x

(Quantizing) Partition:  S = {S1,S2,…,SM}

where   Si  =  {x ∈  Rk
  :  e(x) = ci}

   =  {x ∈  Rk
  :  Q(x) = wi}

   =  ith (quantizing) cell

(A partition of Rk
  is  a collection of disjoint

subsets of  Rk
  whose union is Rk

 .  The
elements of the collection are called cells.)
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Summary:  A VQ is characterized by

Dimension:  k

Size:  M

Encoding rule:  e

characterized by

Partition:  S = {S1,S2,…,SM}  and

Binary codebook:  Cb = {c1, c2, …, cM}

Decoding rule:  d

characterized by

Codebook  C = {w1, w2, …, wM}

Quantization rule:  Q

characterized by  S  and  C

Q(x) = wi  when  x ∈  Si

(You must learn to use this terminology and notation.)
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Examples  (in k=2 dimensions)
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Scalar Quantizer (k=1)
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PERFORMANCE

RATE

R  =  
L
k

=  

 



 1

k log2 M, if M=power of 2
1
k  log2 M  , if M≠power of 2 & one index coded at a time

1
mk  log2 M m   ≅  1k log2 M, if M≠power of 2 & m indices coded at a time

Accordingly, we assume

R  =  1k log2 M      unless there is need to be picky.

Units:  bits/sample

Note:  Rate is determined by the encoder, not the decoder.
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DISTORTION

D  =  MSE  =  mean squared error (normalized by dimension)

=   1k ∑
i=1

k
 E(Xi-Yi)

2
   =    1k E ∑

i=1

k
 (Xi-Yi)

2
 

=   1k  E ||X-Y||2   =   1k  E ||X-Q(X)||2   =  1k  ⌡
⌠
 

 

 ||x-Q(x)||2 fX(x) dx  

=  1k ∑
i=1

M
  ⌡

⌠

Si

 

 ||x-wi||2 fX(x) dx

where

||x-y|| =  Euclidean distance  =  √∑
i=1

k

  (xi-yi)
2
 

expected value is with respect to probability distribution on  X = (X1,...,Xk)

Source vector
We assume X  is modeled as a vector of continuous random variables  X =
(X1,...,Xk),  whose probability distribution is characterized by a joint density
denoted  fX(x)  (or just  f(x)).
When a VQ operates on sequence of vectors, X1,X2,..., we usually assume these
vectors come from a stationary random process.

Note:  Distortion is determined by  Q (or partition and codebook).  The specific encoding
rule, decoding rule and binary codebook do not matter, except as they determine Q.
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HOW VQ DIFFERS FROM SQ

Consider output of correlated source

.

.

.

.

Consider scalar quantization with four levels: C1  =  {-4,-1,1,4}.

Since successive source samples are mostly quantized into adjacent levels,
consider the following 2-dimensional VQ, with only 10 pairs of levels (codevectors)

C2 = {(-4,-4),(-4,-1),(-1,-4),(-1,-1),(-1,1),(1,-1),(1,1),(1,4),(4,1),(4,4)}

Rather than the 16 pairs produced by scalar quantization,

C1× C1  =  {(-4,-4),(-4,-1),(-4,1),(-4,4),(-1,-4),…,(4,4)}

VQ output

.

.

.

.

.

.

.

.

 
.

.

.

.
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Or consider the following 2-dimensional VQ, with codebook consisting only of 4
pairs of levels (codevectors),

C2 = {(-4,-4),(-1,-1),(1,1),(4,4)}

rather than the 16 pairs produced by scalar quantization,

.

.

.

.

.

.

.

.

.
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Another view

Scatter plot of typical  (x1,x2)  pairs
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KEY QUESTIONS:

• How to implement the encoder, i.e. the
partitioning?

• Complexity?

• How to design/optimize fixed-rate
VQ's?
(What properties do good fixed-rate
VQ's have?)

• How to estimate MSE of a VQ?

• How to design low complexity VQ's
with good performance?

• What is best possible performance (D
vs. R) of a VQ? (the opta function)
How does it depend on dimension k?

• How well do low complexity VQ's
perform?  What is it in their structure
that limits their performance?

OUTLINE OF COVERAGE

• Optimality properties of fixed-rate
VQ's.

• "Full search" encoding.

• Generalized Lloyd iterative VQ design
algorithms

• Properties of optimal quantizers,

e.g. E ||Y||2  = E ||X||2  - E ||X-Y||2
 

• High-Resolution Analysis of MSE --
Bennett's integral for VQ

• High-resolution analysis of optimal
performance -- Zador-Gersho formula

• Comparison to Shannon's rate-
distortion theory analysis of optimal
performance

• Product, polar, lattice, two-stage, tree-
structured, hierarchical, ...
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OPTIMALITY PROPERTIES  (Useful in design and implementation)

Property 1:  Given a codebook  C = {w1,…,wM},  let

Vi  =  {x : ||x-wi|| < ||x-wj||,  for all j ≠ i}.

A partition S = {S1,…,SM}  minimizes MSE for the given codebook and random
source vector  X  if and only if

Si 
.
 = Vi  for each  i, (*)

where  A 
.
 = B  means  Pr(X ∈  (A-B) ∪  (B-A)) = 0.

Interpretation/Derivation:
The role of the encoder is to control the decoder to produce the best reproduction
among all that it can produce.  Therefore, if the source vector  x  is closer to  wi  than to
any other codevector, then to minimize MSE,  x  should be quantized to  wi;  i.e.  x
should be in  Si.  This is Prop 1, except that Prop 1 recognizes that MSE is not
affected if the  Si  differs from  Vi's  by a set of probability zero.
Clearly, a partition satisfying (*) has smallest possible MSE for the given codebook;
i.e. it cannot be substantively improved.  Conversely, if a partition does not satisfy (*),
it could be substantively improved, so it could not have smallest MSE.
Note:  There are always points not in any  Vi, namely points for which there are two or
more closest codevectors.  However, the set of such points has zero volume because
it is a (k-1)-dimensional subset of Rk

 .  Consequently, it has zero probability.  Such
points could be assigned to any cell, however, they would normally be assigned to the
cell corresponding to one of the closest codevectors.
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Notes:

• A partition  S  such that  Si ⊇  Vi  for all i  is called a "Voronoi partition", and its cells are
called "Voronoi cells".  Other names for this partition are "nearest neighbor",
"Dirichlet".
Voronoi partitions are unique except for the points that are not contained in any of the
Vi's.  That is,

Si = Vi ∪  Ti

where  Ti  is some subset (possibly empty) of the points that are closest to  wi  as well
to some other point, that is of the subset

{x : ||x-wi|| = ||x-wj||  some  j,  and ||x-wi|| ≤ ||x-wj||  for all  j}

All  Ti's  have probability zero.

• Ordinarily, we won't fuss about the sets of probability zero and the assignment of
points that are equidistant between codevectors and simply say that "the optimal
partition or the Voronoi partition is"

Si = {x : ||x-wi|| < ||x-wj||,  for all j ≠ i}
or

Si = {x : ||x-wi|| ≤ ||x-wj||,  for all j ≠ i}.

• To find Voronoi partition, draw perpendicular bisectors between each pair of
codevectors.  These are (k-1)-dimen'l hyperplanes, each dividing  Rk

   into two half
spaces.  The Voronoi region  Si  is the intersection of the halfspaces containing  wi.

• Voronoi cells are convex polyhedra.
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• 2-Dimensional Example:

• Exercise:  Show that if three points are not colinear, their three perpendicular
bisectors meet a point.
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Property 2:  Given a partition S = {S1, …,SM} and source density  fX(x),  the
codevectors that minimize MSE are the "centroids"

wi  =  E[X|X∈ Si]  =  ⌡
⌠
 

 

 x fX(x|X∈ Si) dx  ,  i = 1,...,M       (**)

where

fX(x|X∈ Si)   =  
 



 

fX(x)
Pr(X∈ Si)

,     x  ∈  S i

0  ,       e l s e

Interpretation/Derivation:
The role of the decoder is to make the best estimate of the source output  X, given its
input, which is, effectively, knowledge of the cell in which  X  lies.
When the decoder is told that  X  lies in cell  Si,  its output, namely  wi,  should be the
minimum MSE estimate of X  given this knowledge, i.e.  wi = E[X|X∈ Si].  Any other
choice leads to larger MSE.  (Recall that  E||X-c||2   is minimized by  c = E X.)
If this is not already clear, it can be seen from the following:

  D =  ∑
i=1

M
 Pr(X∈ Si)  ⌡

⌠

Si

 

 (x-wi)
2
  

fX(x)
Pr(X∈ Si)

 dx   =  ∑
i=1

M
  Pr(X∈ Si)  ⌡

⌠
 

 

 (x-wi)
2
  fX(x|X∈ Si) dx

 =  ∑
i=1

M
  Pr(X∈ Si) E[(X-wi)

2
 |X∈ Si]

The sum is minimized by minimizing each term, i.e. by choosing  wi  =  E[X|X∈ Si].

Note:  The centroid of a convex cell is contained in the cell.
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Corollary:  Given a size  M  and a source density  fX(x),  the best VQ (i.e. the one
with smallest MSE) satisfies (*) and (**), which are called the "optimality properties"
or "optimality criteria".

Notes:

• There may be more than one optimal quantizer.

• Even when there is only one optimal quantizer there may be more than one
quantizer that satisfies the optimality criteria, in which case the best quantizer is
one of them.

Example:  k =2, M=4, (X1,X2)  is IID Gaussian.  All of the following satisfy optimality
criteria.

               

Which is best?
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Fact:  A quantizer is locally optimal iff it satisfies (*) and (**)

Defn:  A VQ is locally optimal if all sufficiently small perturbations increase or maintain
distortion.

What is meant by  "sufficiently small perturbation"?

Replace a codevector  wi  by  wi + ε z for an arbitrary vector z  and some scalar  ε.  If
the VQ is locally optimal, then for any  z  there is an  εo  such that for all  ε ≤ εo,  the
perturbed VQ has the same or larger distortion as the original VQ.  Any number of
codevectors can be perturbed.

What about "sufficiently small perturbations" of the partition?

Imagine moving or stretching some boundary of some cell by an amount
"proportional" to ε.  Then there must exist some εo  such that for all  ε ≤ εo, the
perturbed VQ has the same or larger distortion.  A VQ is locally optimal if for all
possible perturbations (of any number of codevectors and any number of ways of
changing boundaries), there is an εo such that for all ε ≤ εo,  the perturbed VQ has
the same or large distortion.

Sketch of Proof of Fact:  Local opt ⇒  (*) and (**):  If a quantizer does not satisfy (*) and
(**), then it can be improved by small perturbations, so it is not a local optimal.  The
contrapositive of this is:   Local opt ⇒  (*) and (**).

(*) and (**) ⇒  local opt:  If a quantizer satisfies (*) and (**), then it is locally optimal
because any small perturbation will cause it not to satisfy the (*) and (**), and in either
case the MSE will increase.
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BRUTE FORCE IMPLEMENTATION OF "UNSTRUCTURED" VQ

Full-Search Encoding

Store the codebook  C = {w1,…,wM}.

1.  Given  x  compute  ||x-wi||
2
  for each  i

2.  Find the  i  that minimizes  ||x-wi||
2
   and send  ci

This method encodes uses the Voronoi partition S  for  C.
C can be any codebook whatsoever.

Table-Lookup Decoding

Store the codebook  C = {w1,…,wM}.

When the decoder is given  Z = ci,  it outputs  Y = wi  as the reproduction of  X.

This is the basic form of unstructured VQ.  When people speak of ordinary VQ, this
is often what they mean.
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COMPLEXITY OF UNSTRUCTURED VQ

storage:  codebook must be stored at encoder and decoder

 storage ops/sample

encoder: Mkb    3M

decoder: Mkb 0

b = no. of bits/component  ≅   R + 3 to 5  is usually sufficient,

encoding operations:

M distance squared's, each requiring  k  subtracts,
k  squarings,  (k-1) adds,  M-1  comparisons

The "curse of dimensionality"

Since  M=2kR
 , both storage and computation increases exponentially with k  and  R.

The dimension-rate product kR is the key.

This is a big limitation.  Generally,

kR  ≤ 10 or 12.

While modern computers can implement larger codebooks, it turns out that
designing them can be extremely difficult.

There are some faster encoding algorithms, but not have been proven to have less
than exponential complexity.
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There are also:

• Fast search methods for unstructured VQ coebooks.
We will discuss some later.
Though they can be considerably simpler, I've yet to see one whose complexity
does not increase exponentially with distortion-rate product.

• Structured VQ methods
e.g. JPEG
We will discuss other later.
Their codebooks and/or partitions are structured in a way that permits fast
encoding.
Their partition might not be Voronoi.
Their codevectors might not be centroids.
Their performance might not be as good as an "optimal" VQ with the same
dimension and rate, but their lower complexity might permit a larger dimension
and better performance for the same complexity.

  (LOOK BACK TO OUR EXAMPLES)
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GENERALIZED LLOYD VQ DESIGN ALGORITHMS

These are iterative algorithms, in the spirit of Lloyd's algorithm for scalar quantizer
design.  They seek a locally optimum quantizer by alternating between finding the
best partition for the most recently found codebook and finding the best codebook for
the most recently found partition.  They stop when (*) and (**) are nearly satisfied; i.e.
when a locally optimum VQ is approached.  There are two basic types:

A.  Design from pdf

B.  Design from training sequence

A.  Design from pdf.

find 
Voronoi
partition

find 
centroids

choose
initial

codebook

Stop when the centroids and/or the distortion changes negligibly.

Convergence of the algorithm:
Since each step (finding Voronoi partition or centroids) does not increase
distortion, the distortion of the algorithm is guaranteed to converge.
Typically, the actual partition and codebook converge to a local optimum (i.e. a VQ
that satisfies (*)  and  (**)),  which might or might not be the globallyt optimal
quantizer.  But it is conceivable that it might get into a cycle where, for example, it
alternates between two different quantizers.
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Initial codebook:

There are many possible choices.  Some common one:

(a)  A set of  M  representative source sequences.  They might be generated from
the pdf with a random number generator.

(b)  The k-fold Cartesian product of an optimal scalar quantizer with M1/k
  levels.

(c)  The set formed by adding an additional codevector in close proximity to each
codevector of an optimal k-dimensional VQ with  M/2  codevectors.  In this method,
one starts by designing a VQ with 2 codevectors, then successively designs VQ's
with twice the size of the previous one.

The "design from pdf" Lloyd algorithm is seldom used

It is often used for designing scalar quantizers.

It is seldom used for designing vector quantizers (k>1) because
• the pdf of the source vector is often unknown.
• working with a k-dimensional pdf's (e.g. computing the k-dimensional integrals

involved in centroid calculations) is prohibitively complex.

Therefore, in practice VQ's are almost always designed by "training sequence"
methods such as that described next.
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B.  Design from training sequence.  (LBG algorithm)

Given a training sequence  t1, t2, …, tN,  i.e. a representative sequence of
k-dimensional vectors from the source.
Choose an initial codebook  C = {w1,…,wM}.
Iterate the following steps until the centroids change little and/or the distortion
changes little:

1.  Find Voronoi "sets":    
~
 Si = { ti :  ti  closer to  wi  than to any other codevector}

2.  Find empirical centroids:     
~
 wi  =  1

Ni
 ∑
j : tj∈

~
 Si

 

  tj ,   where  Ni = # training vectors in  
~
 Si.

Step 1 is implemented by constructing a table in which each training sequence vector
is labeled with the index of the codevector to which it is closest.

Step 2 is implemented by counting and averaging all training vectors with a given
label.

Alternately, iterate the following single step:  given  w1,…,wM,  find new centroids via
~
 wi  =  1

Ni
  ∑

j : tj closest to wi

 

  tj ,  where Ni = # train'g vect's closest to wi

Here, for each training vector  tj,
• find codevector, say  wi,  to which it is closest, via full search.
• increment a counter that stores  Ni

•  add  tj   to an accumator that computes the sum in   
~
 wi.
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Initial codebook:

The same choices as with Algorithm A are available.

We have a version of this algorithm available, written in C.

LBG = Linde, Buzo and Gray, who published it in IEEE Trans. Commun., Jan. 1980
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Convergence of the algorithm:

Since each step of the algorithm maintains or decreases the training distortion, i.e.
the distortion measured on the training sequence itself, the training distortion will
necessarily converge.

Typically, the partition and codebook generated by the algorithm are converging to a
local optimum, i.e. to a pair that satisfy the empirical versions of (*)  and  (**)).

Since there are only a finite number of distinct partitions of the given training
sequence, after a finite number of steps the algorithm must necessarily reach a local
optimum after which it does not change, or it must cycle repeatedly through some
finite number of paritition-codebook pairs.

However, the algorithm is usually stopped long before either of these occur.

Because the algorithm deals only with a finite set of training vectors, there tend to be
more local minimum than with algorithms based that work directly with the pdf such as
Algorithm A.  Therefore, it is usually wise to rerun the algorithm with several different
choices of initial codebook.
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Training distortion vs. actual distortion:

The actual distortion  (D = E(X-Q(X))2   for the given source) of the quantizer designed
by this algorithm is greater than the training distortion,  which is the distortion
measured on the training sequence.

To see why, consider the extreme case where the training sequence length  N  equals
the size  M  of the desired VQ.  In this case, the algorithm will choose the codebook to
be the training sequence itself, and it will find the training distortion to be zero,
whereas  the actual distortion will ordinarily be far from the mimimum possible
distortion.

The difference between training and actual distortion becomes smaller as  N
increases, but is nevertheless usually significant.

Because training distortion can be substantially smaller than actual distortion, it is
customary to estimate the actual distortion by running the VQ on a test sequence  that
is distinct from the training sequence.
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Training sequence length:

How large to make the training sequence length  N?
Two issues:

• the VQ designed by the algorithm becomes better as  N  is made larger,
• the training distortion becomes a more accurate estimate of actual distortion.

The convergence of the actual and training distortions with increasing  N  are
illustrated in the figure below.  A typical rule of thumb is that to design a good VQ,  N
should be at least  50 M, and larger is better.  Significantly larger  N  is needed if
training distortion is to be used as an estimate of actual distortion.

training sequence length  N

MSE

training sequence distortion

actual distortion

actual distortion of truly best VQ 

A conservative strategy is to choose  N  large enough that the training and test
sequence distortions are reasonably close.
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Complexity of VQ design:

The above design algorithm involves encoding the training sequence a number of
times and, additionally, computing the new centroids.  Hence, the number of
operations performed is approximately proportional to  NM  times the number of
iterations.

Since a VQ is ordinarily designed once and used many, many times, we are willing
to live with very complex VQ design algorithms.  Nevertheless, design becomes a
genuine problem for VQ's with moderate to large dimension-rate products.  (I can't
recall having seen an ustructured VQ designed with  kR > 14).  Thus, there are
dimension-rate products e.g.  kR =15 for which one could conceivably implement a
VQ, but for which design is infeasible.

Not surprisingly a number of reduced complexity design algorithms have been
proposed.  These typically involve a fast encoding algorithm such as those
described previously.  Another way to speed the algorithm is to make a good
choice of the initial codebook.  This reduces the number of iterations required.
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EXAMPLES OF VQ'S DESIGNED BY THE LBG ALGORITHM

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5
Rate  R

SNR  (R)

dB

k = 4

k = 2

k = 8

samples of speech

k
*

k-dimensional VQ's designed using LBG algorithm on training sequence of
640,000 samples of speech taken at 6.5 kHz sampling rate.

Notice the gains with increasing dimension.

Notice also that for  k=8,  the quantizers were designed only to rate 1.  This is
because of the large complexity of designing higher rate VQ's with dimension 8.
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VQ's designed for Gaussian AR source with a = .9
designed by LBG algorithm

5

10

15

20

25

1 2 3 4

Rate

SN
R 

(d
B)

k=8
k=4
k=2
k=1

k=2

k=4

k=1
k=8

Gains of VQ over scalar Q:         k =  2   4  8
gain ≅ 4.2 6.5 7.8  dB

Important questions:

Why does VQ gain over scalar Q?  Why does gain increase with dimension?
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VQ's for IID Gaussian source 
designed by LBG algorithm

5

10

15

20

1 2 3 4

Rate

SN
R

 (
dB

)

k=4
k=2
k=1

k=2

k=4 k=1

Again notice the gains of VQ over scalar quant  (at rate 3, k=4 VQ gains 1.6 dB).

Important questions:
Why does VQ gain over scalar Q?   Why does gain increase with dimension?
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COMPARISON OF QUANTIZERS FOR AN IID GAUSSIAN SOURCE

An optimal 2-dimensional VQ An optimal scalar quantizer used twice

x1

x1

x2 x2

How are the partitions and codebooks different?
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HISTORICAL NOTE

It wasn't until the late 1970's that the VQ was seriously proposed and the
LBG algorithm was developed.  Before that, information theorists generally
assumed that large dimensions would be needed for VQ's to produce
significant gains over scalar quantization (probably due to their experience
with channel codes), and because they could easily see the large
complexity associated with even moderately large dimensions.

The LBG algorithm is also used in pattern recognition for identifying clusters
of multidimensional features.  It was developed independently in that
community as the "k-means algorithm".
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OTHER PROPERTIES OF OPTIMAL QUANTIZERS

Consider a VQ with

C = {w1,…,wM},   S = {S1,…,SM},   Pi = Pr(X∈ Si),   Y = Q(X) = column vector.

Fact:  If  C  satisfies the centroid property  (wi = E[X|X∈ Si]) for all i,  then

1. E Y  =  E X

2. E XmYn  =  E YmYn

3. E Xt
 Y  =  E ||Y||2 

4. E Ym (Xn-Yn)  =  0

5. E Yt
 (X-Y)  =  0

6. E ||Y||2
   =  E ||Y||2  - E ||X-Y||2 
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Proofs:  Assume C satisfies centroid property  (wi = E[X|X∈ Si]).

1. E Y  =  E X

Pf: E Y = ∑
i=1

M

 Pi E[Y|X∈ Si]  = ∑
i=1

M

 Pi wi = ∑
i=1

M

 Pi E[X|X∈ Si]  = E X

2. E XmYn  =  E YmYn

Pf: E XmYn  =  ∑
i=1

k

 Pr(X∈ Si) E[XmYn|X∈ Si]

=  ∑
i=1

k

 Pr(X∈ Si) E[Xmwi,n|X∈ Si]  =  ∑
i=1

k

 Pr(X∈ Si) wi,n wi,m

E YmYn  =  ∑
i=1

k

 Pr(X∈ Si) E[YmYn|X∈ Si]

=  ∑
i=1

k

 Pr(X∈ Si) wi,n wi,m  =  E XmYn

3. E Xt
 Y  =  E ||Y||2

 

Pf: E XtY  =  ∑
i=1

k

 E XiYi  =  ∑
i=1

k

 E YiYi  =  E ∑
i=1

k

 Y 2
i   =  E ||Y||2 

     (by  2)

4. E Ym(Xn-Yn)  =  0

Pf: E Ym(Xn-Yn) = E YmXn - E YmYn = E YmYn - E YmYn  =  0
 (by  2)
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5. E Yt (X-Y)  =  0

Pf: E Yt (X-Y)  =  E Yt X  -  E YtY  =  E ||Y||2  - E ||Y||2
   =  0

 (by  3)

6. E ||Y||2
   =  E ||Y||2  - E ||X-Y||2

 

Pf: E ||X-Y||2
  = E ||X||2

   - 2 E XtY + E ||Y||2 

 = E ||X||2  - 2 E ||Y||2
  + E ||Y||2

  = E ||X||2
  - E ||Y||2

 

(by  3)


