Addendum to DPCM and Transform Coding Lectures:

Fact: If X is a wide-sense stationary, zero-mean random process, then

$$
\left|\mathrm{K}^{(\mathrm{n}+1)}\right|=\mathcal{M}_{\mathrm{n}}\left|\mathrm{~K}^{(\mathrm{n})}\right|
$$

where \mathcal{M}_{n} denotes the mean-squared error of the best linear predictor for X_{i} from X_{i-n}, \ldots, X_{i-n}, and $K^{(n)}$ and $K^{(n+1)}$ denote, respectively, the covariance matrices of X_{1}, \ldots, X_{n} and X_{1}, \ldots, X_{n+1}, and $\left|K^{(n+1)}\right|$ and $\left|K^{(n)}\right|$ denote their determinants.

Proof: We'll use Cramer's rule for solving systems of linear equations and some standard facts regarding determinants. Let $r_{i}=E\left[X_{n} X_{n+i}\right]$ and $\underline{r}=\left[r_{1}, r_{2}, \ldots, r_{n}\right]^{t}$. Then in terms of the r_{i} 's, we showed in lecture that

$$
\mathcal{M}_{n}=\mathrm{r}_{0}-\underline{\mathrm{r}}^{\mathrm{t}}\left(\mathrm{~K}^{(\mathrm{n})}\right)^{-1} \underline{\mathrm{r}} .
$$

(Note that $r_{0}=\operatorname{var}(\mathrm{X})$.) Moreover,

$$
K^{(n+1)}=\left[\begin{array}{lllllll}
r_{0} & r_{1} & . & . & . & r_{n-1} & r_{n} \\
r_{1} & r_{0} & . & . & . & r_{n-2} & r_{n-1} \\
r_{n-1} & r_{n-2} & . & . & . & r_{0} & r_{1} \\
r_{n} & r_{n-1} & . & . & . & r_{1} & r_{0}
\end{array}\right] \text { and } K^{(n)}=\left[\begin{array}{llllll}
r_{0} & r_{1} & . & . & . & r_{n-1} \\
r_{1} & r_{0} & . & . & . & r_{n-1} \\
& & & & & \\
r_{n-1} & r_{n-2} & . & . & . & r_{0}
\end{array}\right] .
$$

For future reference, observe that removing the first row and column of $K^{(n+1)}$ leaves $K^{(n)}$. Let's begin with the expansion of the determinant of $K^{(n+1)}$ along its first row:

$$
\begin{aligned}
\left|K^{(n+1)}\right| & =r_{0}\left|M_{1}\right|-r_{1}\left|M_{2}\right|+r_{2}\left|M_{3}\right| \ldots+(-1)^{n} r_{n}\left|M_{n+1}\right| \\
& =r_{0}\left|K^{(n)}\right|+\sum_{i=1}^{n} r_{i}\left|M_{i+1}\right|(-1)^{i}
\end{aligned}
$$

where M_{i} is $K^{(n+1)}$ with the first row and ith column removed and where it is easy to see that $\left|M_{1}\right|=\left|K^{(n)}\right|$. (M_{i} is called a minor of $K^{(n+1)}$.)
Next, let $\underline{s}=\left[s_{1}, s_{2}, \ldots, s_{n}\right]^{t}=\left(K^{(n)}\right)^{-1} \underline{r}$. By Cramer's rule, $s_{i}=\frac{\left|B_{i}\right|}{\left|K^{(n)}\right|}$, where B_{i} is $K^{(n)}$ with its ith column replaced by $\underline{\underline{r}}$. Therefore

$$
\underline{\mathrm{r}}^{\mathrm{t}}\left(\mathrm{~K}^{(\mathrm{n})}\right)^{-1} \underline{\mathrm{r}}=\underline{\mathrm{r}}^{\mathrm{t}} \underline{\mathrm{~s}}=\frac{1}{\left|\mathrm{~K}^{(\mathrm{n})}\right|} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}}\left|\mathrm{~B}_{\mathrm{i}}\right| .
$$

Therefore,

$$
\mathscr{M}_{\mathrm{n}}\left|\mathrm{~K}^{(\mathrm{n})}\right|=\left(\mathrm{r}_{0}-\underline{\mathrm{r}}^{\mathrm{t}}\left(\mathrm{~K}^{(\mathrm{n})}\right)^{-1} \underline{\mathrm{r}}\right)\left|\mathrm{K}^{(\mathrm{n})}\right|=\mathrm{r}_{0}\left|\mathrm{~K}^{(\mathrm{n})}\right|-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}}\left|\mathrm{~B}_{\mathrm{i}}\right| .
$$

Comparing the expressions for $\left|K^{(n+1)}\right|$ and $\mathscr{M}_{\mathrm{n}}\left|\mathrm{K}^{(\mathrm{n})}\right|$, we see that it remains only to show that

$$
-\left|B_{i}\right|=\left|M_{i+1}\right|(-1)^{i}, \quad i=1, \ldots, n .
$$

To do so, observe that

$$
M_{i+1}=\left[\underline{\mathrm{r}} \tilde{\mathrm{R}}_{\mathrm{i}}^{(\mathrm{n})}\right], \quad \mathrm{i}=1, \ldots, \mathrm{n},
$$

where $\widetilde{\mathrm{R}}_{\mathrm{i}}^{(\mathrm{n})}$ is $\mathrm{R}^{(\mathrm{n})}$ with its ith column removed. We now see that moving the first column of M_{i} to the right ($\mathrm{i}-1$) places creates the matrix B_{i}. Since moving a column to the right one place multiplies the determinant by -1 , we have

$$
\left|B_{i}\right|=\left|M_{i+1}\right|(-1)^{i-1}=-\left|M_{i+1}\right|(-1)^{i}, \quad i=1, \ldots, n,
$$

which is just what we needed to show, and which completes the proof.

