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Addendum to DPCM and Transform Coding Lectures:

Fact:  If  X  is a wide-sense stationary, zero-mean random process,  then

| |K
(n+1)
   =  Mn | |K

(n)
 

where Mn  denotes the mean-squared error of the best linear predictor for  Xi  from

Xi-n,…,Xi-n,  and  K
(n)
   and  K

(n+1)
   denote, respectively, the covariance matrices of

X1,…,Xn  and  X1,…,Xn+1, and  | |K
(n+1)
   and  | |K

(n)
   denote their determinants.

Proof:  We'll use Cramer's rule for solving systems of linear equations and some standard
facts regarding determinants.  Let  ri = E[XnXn+i]  and  r = [r1,r2,…,rn]

t
 .  Then in terms of

the  ri's,  we showed in lecture that
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 r .

(Note that  r0 = var(X).)  Moreover,
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For future reference, observe that removing the first row and column of  K
(n+1)
   leaves K

(n)
 .

Let's begin with the expansion of the determinant of  K
(n+1)
   along its first row:
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where  Mi  is  K
(n+1)
  with the first row and ith column removed and where it is easy to see

that  | |M1  =  | |K
(n)
 .  (Mi  is called a minor of  K

(n+1)
 .)

Next, let  s = [s1,s2,…,sn]
t
 = (K

(n)
 )

-1
 r.  By Cramer's rule,  si = 

| |Bi
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  ,  where  Bi  is  K
(n)
 

with its ith column replaced by  r.  Therefore
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Therefore,
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Comparing the expressions for | |K
(n+1)
   and  Mn | |K

(n)
  ,  we see that it remains only to show

that

-| |Bi  =   | |Mi+1 (-1)
i
 ,  i = 1,… ,n .

To do so, observe that

Mi+1 =  


 
r  

~
 R

(n)
i  ,  i =1,… ,n,

where  
~
 R

(n)
i   is  R

(n)
   with its ith column removed.  We now see that moving the first column

of  Mi  to the right (i-1) places creates the matrix  Bi.  Since moving a column to the right
one place multiplies the determinant by -1, we have

| |Bi   =   | |Mi+1 (-1)
i-1
   =  - | |Mi+1 (-1)

i
 ,  i=1,… ,n,

which is just what we needed to show, and which completes the proof.


