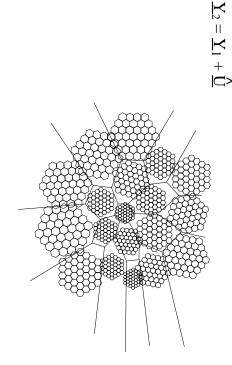
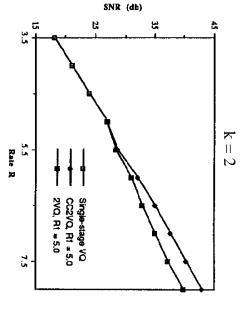

ICASSP '96 Tutorial: Quantization Analysis × First-stage Partition Stage 1 _Ω _,N WHAT'S WRONG WITH 2VQ? & HOW TO FIX IT? Stage 2 Second-stage Partition IV-40 ICASSP '96 Tutorial: Quantization Analysis IV-41

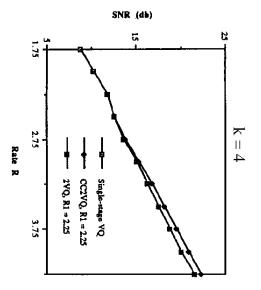

CELL-CONDITIONED TWO-STAGE VQ (CC2VQ)

CC2VQ

- $+ Q_1 = optimal, N_1 pt., k-dimensional VQ for source$
- $+ Q_2 = N_2$ pt., k-dim'l lattice VQ with cells & support region having shape of optimal k-dim'l tessel'ng polytope.
- + For $I=1,...,N_1$, T_I is rotating/scaling transformation such that $T_1S_{1,I}$ matches support region of Q_2 .
- + Operation

 \underline{X} quantized by Q_1 and found to be in I-th cell of S_1 ; \underline{U} transformed by T_1 ; $\underline{Z} = T_1 \underline{U}$ quantized by Q_2 ;

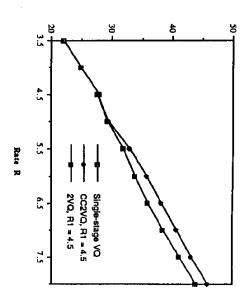



ICASSP '96 Tutorial: Quantization Analysis

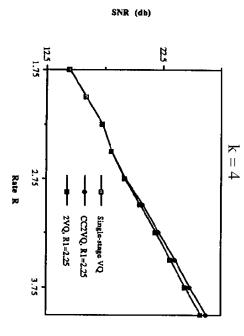
IV-42

CC2VQ VS. GREEDY 2VQ

IID Gaussian Source


ICASSP '96 Tutorial: Quantization Analysis

IV-43


CC2VQ VS. GREEDY 2VQ

Gaussian Markov Source, $\rho = .9$

SNR (db)

ICASSP '96 Tutorial: Quantization Analysis

IV-44

ASYMPTOTIC PERFORMANCE OF CC2VQ

- Point density is that of the optimal first stage
- Cells have shape of the optimal lattice quantizer
- \Rightarrow Performance is asymptotically equal to $D_k^*(R)$, which is the best possible performance of k-dimensional VQ's with rate R

In other words 2VQ has been "fixed".

Implementation Notes

- In practice, cells of optimal first stage are so nearly spherical that rotation isn't needed, only scaling.
- CC2VQ has lower complexity than ordinary 2VQ, because second stage is simpler.
- CC2VQ is faster to design than ordinary 2VQ.

General 2VQ Principles

- The role of the first stage is to determine the point density.
- The role of the second stage is to determine the cell shape and preserve the point density of the first stage by uniformly refining the first stage cells with a good cell shape.

References [LeeN90b, Lee90, PaFi95, JeGi94, KuBu88,]