Lecture on Arithmetic Coding EECS 651, Winter 2001

Conditional Coding

For every m-tuple $X_{1} \ldots X_{m}$, there is a prefix code $\mathbf{C}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$ optimized for conditional probabilities $\left\{\mathbf{P}\left(\mathbf{x} \mid \mathbf{X}_{1} \ldots \mathbf{X}_{\mathbf{m}}\right): \mathbf{x} \in \mathbf{A}\right\}$.

Overall rate

$$
\mathbf{H}\left(\mathbf{X}_{\mathbf{m}+1} \mid \mathbf{X}_{1} \ldots \mathbf{X}_{m}\right) \leq \text { Rate }^{*} \leq \mathbf{H}\left(\mathbf{X}_{m+1} \mid \mathbf{X}_{1} \ldots \mathbf{X}_{m}\right)+\mathbf{1}
$$

where conditional is entropy is

$$
H\left(X_{m+1} \mid X_{1} \ldots X_{m}\right)=-\sum_{x_{1} \ldots x_{m}+1} P_{1}\left(x_{1} \ldots x_{m+1}\right) \log P\left(x_{m+1} \mid x_{1} \ldots x_{m}\right)
$$

For stationary sources

$$
\mathbf{H}\left(\mathbf{X}_{m+1} \mid \mathbf{X}_{1} \ldots \mathbf{X}_{m}\right) \downarrow \quad \mathbf{H}_{\infty}(\mathbf{X}) \quad\left(\text { faster than } \quad \mathbf{H}_{m}(\mathbf{X}) \downarrow \mathbf{H}_{\infty}(\mathbf{X})\right)
$$

Complexity is of the same order as block-to-variable length codes with blocklength $m+1$.

Arithmetic Coding

$$
\text { bits } \quad \text { source symbol }
$$

$$
\begin{aligned}
& \hat{\mathbf{p}}_{\mathbf{n}}=\left\{\hat{\mathbf{p}}_{\mathbf{n}}(\mathbf{x}): \mathbf{x} \in \mathbf{A}\right\}, \quad \hat{\mathbf{p}}_{\mathbf{n}}(\mathbf{x})=\text { estimate of } \mathbf{P}\left(\mathbf{X}_{\mathbf{n}}=\mathbf{x} \mid \underline{\mathbf{X}^{-}}\right) \\
& \text {from past X's, where } \\
& \underline{X}^{-} \text {denotes recent past } X_{n}{ }^{\prime} s \\
& \underline{\mathbf{Z}}_{\mathbf{n}}=\text { bits emitted in response to } \mathbf{X}_{\mathbf{n}} \\
& X_{1} \ldots X_{n} \rightarrow Z_{1} \ldots Z_{L_{n}} \text { where } L_{n} \leq-\log \prod_{i=1}^{n} \hat{p}_{n\left(X_{i}\right)}
\end{aligned}
$$

Arithmetic Coding

Key example: When encoding sequence (x_{1}, x_{2}, \ldots)

$$
\begin{gathered}
\hat{\mathbf{p}}_{\mathrm{n}}(\mathrm{x})=\text { estimate of } P\left(X_{n}=x \mid X_{n-m}=x_{n-m}, \ldots, X_{n-1}=x_{n-1}\right) \\
\text { based on } x_{1}, \ldots, x_{n-1}
\end{gathered}
$$

If source is stationary $\&$ ergodic and probability estimates are perfect

$$
\begin{aligned}
\frac{L_{n}}{n} & \cong-\frac{1}{n} \log \prod_{i=1}^{n} \hat{p}_{n}\left(X_{i}\right) \\
& \cong-\frac{1}{n} \log \prod_{i=1}^{n} \operatorname{Pr}\left(X_{i}=x_{i} \mid X_{i-m}=x_{i-m} \ldots X_{i-1}=x_{i-1}\right) \\
& =-\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{Pr}\left(X_{i}=x_{i} \mid X_{i-m}=x_{i-m} \ldots X_{i-1}=x_{i-1}\right) \\
& \cong H\left(X_{m+1} \mid X_{1} \ldots X_{m}\right) \quad \begin{array}{c}
\text { with high probability, } \\
\text { by ergodic thm. } \\
\text { (law of large numbers) }
\end{array}
\end{aligned}
$$

Probability Estimation

Basic idea

> Maintain table of conditional frequency of occurrence of x_{m+1} after x_{1}, \ldots, x_{m}, all $x_{1}, \ldots, x_{m}, x_{m+1}$

Reduce size of tables
Keep only the most important conditioning events. (Lump events with similar conditional frequencies.)

Arithmetic Coding Engine

Restrict attention to binary sources.

Irregular nature of encoding and decoding. (the following are not the actual trees)

Levels of Explanation

Infinite sequence to infinite sequence

$$
\mathbf{X}_{1} \mathbf{X}_{2} \ldots \rightarrow \mathbf{Z}_{1} \mathbf{Z}_{2} \ldots
$$

Finite sequence to finite sequence

$$
\mathbf{X}_{1} \ldots \mathbf{X}_{n} \rightarrow \mathbf{Z}_{1} \ldots \mathbf{Z}_{\mathbf{L}_{n}}
$$

Incremental encoding and decoding
after $\quad \mathbf{X}_{1} \ldots \mathbf{X}_{\mathbf{n - 1}} \rightarrow \mathbf{Z}_{1} \ldots \mathbf{Z}_{\mathbf{L}_{\mathbf{n}-1}}$,

$$
\mathbf{X}_{\mathbf{n}} \rightarrow \mathbf{Z}_{\mathbf{L}_{\mathbf{n}-1}} \ldots \mathbf{Z}_{\mathbf{L}_{\mathbf{n}}}
$$

Incremental encoding with finite precision arithmetic we'll skip this

For purposes of discussion:
Assume binary, stationary, memoryless source with known probability distribution. (No prob. estimation.)

$$
\begin{aligned}
& \mathbf{P}(\mathbf{X}=\mathbf{a})=\mathbf{p}, \quad \mathbf{P}(\mathbf{X}=\mathbf{b})=1-p \quad(\mathbf{p} \cong .7 \text { in pictures }) \\
& \mathbf{P}\left(\mathbf{X}_{1} \ldots \mathbf{X}_{\mathbf{n}}=\mathbf{a} \text { a } \mathbf{b} \mathbf{a} \mathbf{b} . .\right)=\mathbf{p}^{\mathbf{N}_{\mathbf{a}}}(1-p)^{\mathbf{N}_{b}}
\end{aligned}
$$

Interval Partitioning

For each n, partition unit interval [0,1] according to probability of n-tuples.

Notation

$$
\mathbf{J}_{\mathbf{X}^{\mathbf{n}}}=\left[\mathbf{A}_{\mathbf{n}}, \mathbf{B}_{\mathbf{n}}\right]=\text { interval assoc. with } \quad \mathbf{X}^{\mathbf{n}}=\left(\mathbf{X}_{1} \ldots \mathbf{X}_{\mathbf{n}}\right)
$$

Key facts

$$
\begin{aligned}
& P\left(X^{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right)=\text { length of } J_{X^{n}} \\
& \mathbf{J}_{\mathbf{X}^{\mathbf{n}}} \subset \mathbf{J}_{\mathbf{X}}{ }^{\mathbf{n - 1}} \\
& \mathbf{J}_{\mathbf{X}^{\mathbf{n}}}=\mathbf{J}_{\mathbf{X}^{\mathbf{n - 1}} \mathbf{a}} \cup \mathbf{J}_{\mathbf{X}^{\mathbf{n - 1}}} \mathbf{1}_{\mathbf{b}} \\
& \mathbf{J}_{X^{n}}= \begin{cases}{\left[A_{n-1}, A_{n-1}+p\left(B_{n-1}-A_{n-1}\right)\right],} & \text { if } X_{n}=a \\
{\left[A_{n-1}+p\left(B_{n-1}-A_{n-1}\right), B_{n-1}\right],} & \text { if } X_{n}=b\end{cases}
\end{aligned}
$$

Infinite sequence to infinite sequence encoding

Encode $\quad X_{1} X_{2} \ldots$ into $Z_{1} Z_{2} \ldots$,
where $Z_{1} Z_{2} \ldots \quad$ is the binary expansion of the number

$$
\begin{aligned}
Z & =\mathbf{J}_{\mathbf{X}^{1}} \cap \mathbf{J}_{\mathbf{X}^{2}} \cap \mathbf{J}_{\mathbf{X}^{3}} \cdots \quad(\mathbf{Z} \in[\mathbf{0 , 1}]) \\
& =\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} B_{n}
\end{aligned}
$$

i.e.,

$$
\mathbf{Z}=. \mathbf{Z}_{1} \mathbf{Z}_{2} \mathbf{Z}_{3} \ldots \quad\left(\mathbf{Z}_{\mathbf{n}} \in\{\mathbf{0}, \mathbf{1}\}\right)
$$

Cannot deducing the rate of the code from just the infinite sequence to infinite sequence encoding rule.

Facts:

1. $Z \in \mathbb{X}$ all n
2. $Z \in \underset{u^{1}}{ } \mathbf{J}_{\mathbf{n}}$ if and only if $u_{1} \ldots u_{n}=x_{1} \ldots x_{n}$

Finite sequence to finite sequence encoding

Encode $\quad \mathbf{X}_{1} \mathbf{X}_{\mathbf{2}} \ldots \mathbf{X}_{\mathrm{n}}$ into $\mathbf{Z}_{\mathbf{1}} \mathbf{Z}_{\mathbf{2}} \ldots \mathbf{Z}_{\mathbf{L}_{\mathbf{n}}}$

1. Find $J_{X^{n}}=\left[A_{n}, B_{n}\right]$
2. Let $Z_{1} \mathbf{Z}_{2} \ldots \mathbf{Z}_{L_{n}}=$ Greatest Common Prefix (GCP) of binary expansions of A_{n} and B_{n}.

$$
\begin{aligned}
& A_{n}=. Z_{1} Z_{2} Z_{3} \ldots Z_{L_{n}} a_{L_{n}+1} \ldots \\
& \mathbf{B}_{n}=. Z_{1} Z_{2} Z_{3} \ldots Z_{L_{n}} b_{L_{n}+1} \ldots \\
& 0 \\
& 0
\end{aligned}
$$

Encoding rate

$$
\begin{aligned}
& P\left(X^{n}\right)=B_{n}-A_{n}=.00 \ldots 001 ? ? \quad\left(L_{n} 0 ' s\right) \\
& \leq .00 \ldots 0100 \ldots \\
&=2^{-L_{n}} \\
& \Rightarrow \frac{L_{n}}{n} \leq-\frac{1}{n} \log P\left(X_{n}-1 \quad 0^{\prime}\right) \cong H_{\infty}(X)
\end{aligned}
$$

Finite sequence to finite sequence decoding

Given $\quad \mathbf{Z}_{1} \mathbf{Z}_{\mathbf{2}} \ldots \mathbf{Z}_{\mathbf{L}}$

2. Find n (as large as possible) and $X_{1} \ldots X_{n}$ such that

$$
\mathbf{J}_{\mathbf{X}^{\mathbf{n}}} \supset \mathbf{K}_{\mathbf{Z}^{\mathbf{L}}}
$$

3. Decode $Z_{1} Z_{2} \ldots Z_{L}$ into $X_{1} \ldots X_{n}$

Recall Key fact
$\mathbf{Z} \in \mathbf{J}_{\mathbf{u}^{\mathbf{n}}}$ implies $\mathbf{u}^{\mathbf{n}}=\mathbf{x}^{\mathbf{n}}$

Incremental encoding

Replace p by a dyadic fraction $p=\sum_{i=1}^{q} p_{i} 2^{-i}$. Do all arithmetic base 2 .

Assume: Already encoded $\quad X^{n-1}$ into $Z^{L_{n-1}}$

$$
\mathbf{J}_{\mathbf{X}}{ }_{n-1}=\left[A_{n-1}, B_{n-1}\right] \quad\left(A_{n-1} \& B_{n-1} \text { are dyadic }\right)
$$

Binary expansion of A_{n-1} and B_{n-1} need only be computed out to where they disagree.

Given next source symbol X_{n}

1. Compute binary expansions of A_{n} and B_{n} out to where they disagree. These begin with $Z^{L_{n-1}}$.
2. Their GCP is $Z^{L_{n}}=\left(Z^{L_{n-1}}, Z_{L_{n-1}+1}, \ldots, Z_{L_{n}}\right)$
3. Output $Z_{L_{n-1}+1}, \ldots, Z_{L_{n}}$ (if not empty).

As n increases, the arithmetic precision needs to increase.

Incremental decoding is similar

Arithmetic coding credits

Elias (~1960, unpublished, see Abramson's info thy text)invented the coding by partitioning
Rissanen 1976, Pasco 1976developed the first incremental methods for finiteprecision
Further developments
Rissanen, Langdon 1979, 1981, 1981
Rubin 1979
Guazzo 1980
Jones 1981
Cleary \& Witten, 1984, 1984, 1987
IBM Q-coder 1988

