Lecture on Arithmetic Coding EECS 651, Winter 2001

Conditional Coding

For every m-tuple $X_1...X_m$, there is a prefix code $C(X_1,...,X_m)$ optimized for conditional probabilities { $P(x|X_1...X_m) : x \in A$ }.

Overall rate

 $H(X_{m+1}|X_{1}...X_{m}) \leq Rate^{*} \leq H(X_{m+1}|X_{1}...X_{m}) + 1$

where conditional is entropy is

 $H(X_{m+1}|X_{1}...X_{m}) = -\sum_{\substack{x_{1}...x_{m+1}}} P(x_{1}...x_{m+1}) \log P(x_{m+1}|x_{1}...x_{m})$

For stationary sources

 $H(X_{m+1}|X_1...X_m) \downarrow H_{\infty}(X)$ (faster than $H_m(X) \downarrow H_{\infty}(X)$)

Complexity is of the same order as block-to-variable length codes with blocklength m+1.

 $\hat{p}_n = \{ \hat{p}_n(x) : x \in A \}, \quad \hat{p}_n(x) = \text{estimate of } P(X_n = x \mid \underline{X})$ from past X's, where $\underline{X} \text{ denotes recent past } X_n \text{ 's}$

 \underline{Z}_n = bits emitted in response to X_n

 $X_1...\ X_n \ \rightarrow \ \ Z_1...\ Z_{L_n} \ \ \text{where} \ \ \ L_n \ \leq \ \text{-} \ \log \prod_{i=1}^n \ \ \hat{p}_n(X_i)$

Arithmetic Coding

Key example: When encoding sequence $(x_1, x_2, ...)$

$$\hat{p}_n(x)$$
 = estimate of $P(X_n = x | X_{n-m} = x_{n-m}, ..., X_{n-1} = x_{n-1})$
based on $x_1, ..., x_{n-1}$

If source is stationary & ergodic and probability estimates are perfect

Probability Estimation

Basic idea

Maintain table of conditional frequency of occurrence of x_{m+1} after $x_1,...,x_m$, all $x_1,...,x_m,x_{m+1}$

Reduce size of tables

Keep only the most important conditioning events. (Lump events with similar conditional frequencies.)

Arithmetic Coding Engine

Restrict attention to binary sources.

Irregular nature of encoding and decoding. (the following are not the actual trees)

Levels of Explanation

Infinite sequence to infinite sequence

 $X_1 \ X_2 \ \ldots \ \rightarrow \ Z_1 \ Z_2 \ \ldots$

Finite sequence to finite sequence

 $X_1 \ ... \ X_n \ \rightarrow \ Z_1 \ ... \ Z_{L_n}$

Incremental encoding and decoding

after
$$\quad X_1 \ ... \ X_{n-1} \ \rightarrow \ Z_1 \ ... \ Z_{L_{n-1}}$$
 ,

 $X_n \ \rightarrow \ Z_{L_n\textbf{-1}}\textbf{...} \ Z_{L_n}$

Incremental encoding with finite precision arithmetic we'll skip this

For purposes of discussion:

Assume binary, stationary, memoryless source with known probability distribution. (No prob. estimation.) P(X = a) = p, P(X = b) = 1-p ($p \cong .7$ in pictures)

P(X₁...X_n = a a b a b ...) =
$$p^{N_a}$$
 (1-p)^{N_b}

Interval Partitioning

For each n , partition unit interval [0,1] according to probability of n-tuples.

Notation

 $J_{X^n} = [A_n, B_n] = \text{interval assoc. with} \quad X^n = (X_1...X_n)$

Key facts

$$\begin{split} P(X^n) &= \prod_{i=1}^n P(X_i) = \text{ length of } J_{X^n} \\ J_{X^n} &\subset J_{X^{n-1}} \\ J_{X^n} &= J_{X^{n-1}a} \cup J_{X^{n-1}b} \\ J_{X^n} &= \begin{cases} \left[A_{n-1}, A_{n-1} + p(B_{n-1} - A_{n-1}) \right], & \text{if } X_n = a \\ \left[A_{n-1+p(B_n-1} - A_{n-1}), B_{n-1} \right], & \text{if } X_n = b \end{cases} \end{split}$$

Infinite sequence to infinite sequence encoding

Encode $X_1 X_2 \dots$ into $Z_1 Z_2 \dots$,

where Z₁ Z₂... is the binary expansion of the number

$$Z = J_{X1} \cap J_{X2} \cap J_{X3} \dots \qquad (Z \in [0,1])$$

 $= \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n$

i.e.,

$$Z = . Z_1 Z_2 Z_3 ... \quad (Z_n \in \{0,1\})$$

Cannot deducing the rate of the code from just the infinite sequence to infinite sequence encoding rule.

Facts:

1. $Z \in J_n$ all n

2. $Z \in J_n$ if and only if $u_1...u_n = x_1...x_n$

Finite sequence to finite sequence encoding

Encode $X_1 X_2 \dots X_n$ into $Z_1 Z_2 \dots Z_{L_n}$

1. Find $J_{X^n} = [A_n, B_n]$ 2. Let $Z_1 Z_2 ... Z_{L_n} =$ Greatest Common Prefix (GCP) of binary expansions of A_n and B_n . $A_n = . Z_1 Z_2 Z_3 ... Z_{L_n} a_{L_n+1} ...$ $B_n = . Z_1 Z_2 Z_3 ... Z_{L_n} b_{L_n+1} ...$ Z 0 II

$$B_{n} = \cdot Z_{1} Z_{2} Z_{3} \dots Z_{L_{n}} U_{L_{n}+1} \dots$$

$$Z$$

$$0$$

$$A_{n}$$

$$B_{n}$$

$$\cdot \cdot Z_{1} Z_{2} \dots Z_{L_{n}} 0??$$

$$\cdot \cdot Z_{1} Z_{2} \dots Z_{L_{n}} 1??$$

Encoding rate

$$P(X^{n}) = B_{n} - A_{n} = .00 ... 001??? \qquad (L_{n} 0's)$$

$$\leq .00 ... 0100 ... \qquad (L_{n}-1 0's)$$

$$= 2^{-L_{n}}$$

$$\implies \frac{L_{n}}{n} \leq -\frac{1}{n} \log P(X^{n}) \cong H_{\infty}(X)$$

Finite sequence to finite sequence decoding

Given $Z_1 Z_2 \dots Z_L$

- 1. Let $K_{ZL} = [\cdot Z_1 Z_2 \dots Z_L 0 0 \dots , \cdot Z_1 Z_2 \dots Z_L 1 1 \dots]$
- 2. Find n (as large as possible) and $X_1...X_n$ such that $J_{X^n} \supset K_{Z^L}$
- 3. Decode $Z_1 Z_2 \dots Z_L$ into $X_1 \dots X_n$

Recall Key fact

 $Z \ \in \ J_{u^n} \quad implies \ u^n = x^n$

Incremental encoding

Replace p by a dyadic fraction $p = \sum_{i=1}^{q} p_i 2^{-i}$.

Do all arithmetic base 2.

Assume: Already encoded X^{n-1} into $Z^{L_{n-1}}$ $J_{X^{n-1}} = [A_{n-1}, B_{n-1}]$ (A_{n-1} & B_{n-1} are dyadic) Binary expansion of A_{n-1} and B_{n-1} need only be computed out to where they disagree.

Given next source symbol X_n

- 1. Compute binary expansions of A_n and B_n out to where they disagree. These begin with $Z^{L_{n-1}}$.
- 2. Their GCP is $Z^{L_n} = (Z^{L_{n-1}}, Z_{L_{n-1}+1}, ..., Z_{L_n})$
- 3. Output $Z_{L_{n-1}+1}$, ..., Z_{L_n} (if not empty).

As n increases, the arithmetic precision needs to increase.

Incremental decoding is similar

Arithmetic coding credits

- Elias (~1960, unpublished, see Abramson's info thy text) invented the coding by partitioning
- Rissanen 1976, Pasco 1976

developed the first incremental methods for finite precision

Further developments

Rissanen,	Langdon	1979,	1981,	1981
Rubin 1	979			
Guazzo 1	980			
Jones 19	81			

- Cleary & Witten, 1984, 1984, 1987
- IBM Q-coder 1988