Summary of Shannon Rate-Distortion Theory
Consider a stationary source X with kth-order probability density
function denoted fi(x).

Consider VQ with fixed-rate coding.
Recall the following OPTA function definitions.
d(k,R) = least dist'n of k-dim'l fixed-rate VQ's w. rate < R
O(R) = ilr<1f O(k,R)
= least dist'n of VQ's with rate < R and any dimension

These functions describe the best possible performance of fixed-rate
VQ's.

High-Resolution Theory enabled us to find concrete formulas for
them (the Zador-Gersho formulas) for the case that R is large.

Shannon's rate-distortion theory enables one to find &(R) for ANY
value of R. However, it does not allow us to find &(k,R), not even for
some R's. The key result is the following.
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Shannon's Distortion-Rate Theorem
For a stationary, ergodic source with finite variance.
XR) = D(R)
OPTA function = Shannon's DRF

where
D(R) = Shannon's "distortion-rate function"

= lim D(k,R)

k - o0
D(R) = Inf B x-v°
q 0 Qk(R)
X = (X1...Xk) random variables from source

Y = (Y1...YK) random variables from test channel q

Qk(R) = set of test channels (cond'l prob. densities)

= {aubo: €10 auo) togz NIV ax ay <R}

"mutual information” 1(X;Y)

E & ||X-X||2 IS computed wrt to joint density f(x)q(y|x)

* This theorem is one of the deep and central results of information
theory.
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Its proof can be found in information theory texts.

As does most of information theory, it uses the asymptotic
equipartition property, which follows from the law of large
numbers.

We'll sketch some ideas of the proof later.

The theorem says two things:

Positive statement. For any R, there exist VQ's with rate R or
less having MSE arbitrarily close to D(R).

Negative statement. For any R, every VQ with rate R or less has
MSE greater than or equal to D(R).

The test channels introduced in the definition of D(R) are not to be
considered codes or any other part of an actual physical system.

Although the definition of D(R) is quite complex, there are cases,
such as Gaussian sources, where it can be reduced to a closed
form or parametric expression. In other cases, the "Blahut
algorithm" can be used to compute it.

The theorem can be generalized to show that no variable-rate
code can do better than D(R). Thus D(R) is also the best
performance of variable-rate codes. The theorem can even be
generalized to show that other coding structures can do no better
than D(R).

Unfortunately, this theorem does not indicate how large the
dimension needs to be to get good performance.
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» The theorem generalizes to other distortion measures of the form
k
1
dx.y) = i izl d(xi,yi)
which are called per-letter distortion measures.
* The theorem is often stated as showing
r(D) = R(D)

l.e. the equality of the rate vs. distortion OPTA function, which is
the inverse of d(R), and the "Shanon rate-distortion function"
R(D), which is the inverse of D(R). In fact, this is where the
subject gets its name.
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Shannon Rate-Distortion Theory
and High-Resolution Theory
Are Complementary

Consider Fixed-Rate Coding
« Shannon Theory:

Forlarge k and any R, &(k,R) U D(R)
» High-Resolution Theory:

Forlarge R andany k: &k,R) U Z(k,R)
e Forlarge k and large R, they agree

&R) U &k,R) U z(kk,R) U D(R)

* Important Note: D(k,R) # o(k,R)

Relationships between distortion-rate functions and Zador-
Gersho functions

The following can be shown mathematically (they also follow from
what we know about the operational significance of Dg(R) and
Z(k,R)):

. DkR) = Y™ 72,(kR)
M
The ratio of the left and right sides goes to one as R — oo,
* D(R) = Z(R)

The ratio of the left and right sides goes to one as R - oo,

(In distortion-rate theory, the above inequalities are called
Shannon-Lower Bounds to the distortion-rate function.)
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PROPERTIES OF THE DISTORTION-RATE FUNCTION
D(0) = D(k,0) = ¢°
D(R) > 0 and D(k,R) > O,forall R=0

D(R) and D(k,R) decrease montonically towards zero as R
increases.

D(R) and D(k,R) are convex (and consequently continuous)
functions of R.

The D(k,R)'s are subadditive. Thatis forany k and m
D(k+m,R) < . D(K,R) + .~ D(m,R)
From which it follows that
D(R) < D(nk,R) < D(k,R) < D(1,R) for all k.
D(R) = inf D(k,R)
k
Thus, the D(k,R)'s tend to decrease with k but not necessarily
monotonically.
D(R) = D(1,R) when the source is IID.

For an IID Gaussian source

D(R) = D(L,R) = g2k

For a first-order AR Gaussian source with correlation coef. p
D(R) = 02(1-p2) 2%R for R 2% log? (1+p)2

(No closed form expression for other R's.)
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10.

11.

12.

There are other sources for which D(R) can be computed
analytically (e.g. Gaussian but not IID, and IID Laplacian).

For other sources D(R) must be computed numerically, and
there is a numerical algorithm for computing D(k,R) called the
Blahut algorithm.

An upper bound: D(R) and D(k,R) are upper bounded by the
corresponding functions for a Gaussian source with the same
autocorrelation function (equivalently, power spectral density).
In other words Gaussian sources are the hardest to compress of
those sources with a given autocorrelation function.

There are other lower bounds besides the Shannon lower
bound.
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13. For a stationary Gaussian source with power spectral density
S(w), there is a parametric expression for the distortion-rate

function.

Let Smin and Smax denote the min and max values of S(w).
The forany 6, 0<0< Smax, Ds=D(Rg), where

Re

1| 1, S
omt ,L max{0, 5 logz e} dw

Do = 2111,[[ min{8, S(cw)} dw

Special cases:
06=0 U Rg=o, Dg=0
e:SmaxD R:O, De:O'2

Tt
S
0<Smin 0 Re = 2111,L 12Iogz(ew)dw and Dg = 6.
1 1. S 1. Q
0 R(D) = ZT[)L §|Og2?d(ﬂ :§|0926, D < Smin

2R 1 Q

0 D(R)

where Q is the minimum mean squared error of a lienar
prediction of X based only past values:

Q= exp{zln_fln S(w) dw
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