
EECS 651 Winter 2001

January 12, 2001 24 Vector Quantization

There are also:

• Fast search methods for unstructured VQ coebooks.

We will discuss some later.

Though they can be considerably simpler, I've yet to see
one whose complexity does not increase exponentially
with distortion-rate product.

• Structured VQ methods

e.g. JPEG

We will discuss other later.

Their codebooks and/or partitions are structured in a way
that permits fast encoding.

Their partition might not be Voronoi.

Their codevectors might not be centroids.

Their performance might not be as good as an "optimal" VQ
with the same dimension and rate, but their lower
complexity might permit a larger dimension and better
performance for the same complexity.

EECS 651 Winter 2001

January 12, 2001 25 Vector Quantization

VQ Design Algorithms

Generalized Lloyd algorithms

These are iterative algorithms, in the spirit of Lloyd's algorithm
for scalar quantizer design. They seek a locally optimum
quantizer by alternating between finding the best partition for
the most recently found codebook and finding the best
codebook for the most recently found partition. They stop
when (*) and (**) are nearly satisfied; i.e. when a locally
optimum VQ is approached. There are two basic types:

A. Design from pdf

B. Design from training sequence

A. Design from pdf.

find
Voronoi
partition

find
centroids

choose
initial

codebook

Stop when the centroids and/or the distortion changes
negligibly.

Convergence of the algorithm:

Since each step (finding Voronoi partition or centroids) does
not increase distortion, the distortion of the algorithm is
guaranteed to converge.

Typically, the actual partition and codebook converge to a
local optimum (i.e. a VQ that satisfies (*) and (**)), which
might or might not be the globallyt optimal quantizer. But it
is conceivable that it might get into a cycle where, for
example, it alternates between two different quantizers.

EECS 651 Winter 2001

January 12, 2001 26 Vector Quantization

Initial codebook:

There are many possible choices for the initial codebook Co.
Some commonly suggsted possibilities include:

(a) A set of M representative source sequences. They
might be generated from the pdf with a random number
generator.

(b) The k-fold Cartesian product of an optimal scalar
quantizer with M1/k

 levels.

(c) The set formed by adding an additional codevector in
close proximity to each codevector of an optimal k-dimen-
sional VQ with M/2 codevectors. In this method, one starts
by designing a VQ with 2 codevectors, then successively
designs VQ's with twice the size of the previous one.

The "design from pdf" Lloyd algorithm is seldom used

It is often used for designing scalar quantizers.

It is seldom used for designing vector quantizers (k>1)
because

• the pdf of the source vector is often unknown.

• working with a k-dimensional pdf's (e.g. computing the
k-dimensional integrals involved in centroid calculations)
is prohibitively complex.

Therefore, in practice VQ's are almost always designed by
"training sequence" methods such as that described next.

EECS 651 Winter 2001

January 12, 2001 27 Vector Quantization

B. Design from training sequence. (LBG algorithm)

Given a training sequence t1, t2, …, tN, i.e. a representative
sequence of k-dimensional vectors from the source.

Choose an initial codebook C = {w1,…,wM}.

Iterate the following steps until the centroids change little
and/or the distortion changes little:

1. Find Voronoi "sets":
~
 Si = { ti : ti closer to wi than to any other codevector}

2. Find empirical centroids.
~
 wi = 1

Ni
 ∑
j : tj∈

~
 Si

 tj , where Ni = # training vectors in

~
 Si.

Step 1 is implemented by constructing a table in which each
training sequence vector is labeled with the index of the
codevector to which it is closest.

Step 2 is implemented by counting and averaging all training
vectors with a given label.

Alternately, one may iterate just the following single step:
given w1,…,wM, design new centroids via

~
 wi = 1

Ni
 ∑

j : tj closest to wi

 tj , where Ni = # train'g vect's closest to wi

Here, for each training vector tj,

• find codevector, say wi, to which it is closest, via full
search.

• increment a counter that stores Ni

• add tj to an accumator that computes the sum in
~
 wi.

EECS 651 Winter 2001

January 12, 2001 28 Vector Quantization

Initial codebook:

The same choices as with Algorithm A are available.

We have a version of this algorithm available, written in C.

LBG = Linde, Buzo and Gray,
IEEE Trans. Commun., Jan. 1980

EECS 651 Winter 2001

January 12, 2001 29 Vector Quantization

Convergence of the algorithm:

Since each step of the algorithm maintains or decreases the
training distortion, i.e. the distortion measured on the training
sequence itself, the training distortion will necessarily con-
verge.

Typically, the partition and codebook generated by the
algorithm are converging to a local optimum, i.e. to a pair that
satisfy the empirical versions of (*) and (**)).

Since there are only a finite number of distinct partitions of the
given training sequence, after a finite number of steps the
algorithm must necessarily reach a local optimum after which it
does not change, or it must cycle repeatedly through some
finite number of paritition-codebook pairs.

However, the algorithm is usually stopped long before either of
these occur.

Because the algorithm deals only with a finite set of training
vectors, there tend to be more local minimum than with
algorithms based that work directly with the pdf such as
Algorithm A. Therefore, it is usually wise to rerun the algorithm
with several different choices of initial codebook.

EECS 651 Winter 2001

January 12, 2001 30 Vector Quantization

Training distortion vs. actual distortion:

The actual distortion of the quantizer designed by this algorithm
(D = E(X-Q(X))2

) is greater than the training distortion.

To see the cause of this inequality, consider the extreme case
where the training sequence length N equals the size M of
the desired VQ. In this case, the algorithm will choose the
codebook to be the training sequence itself, and it will find the
training distortion to be zero, whereas the actual distortion
might might be far from the mimimum.

The difference between training and actual distortion becomes
smaller as N increases, but is nevertheless usually significant.

Because training distortion can be substantially smaller than
actual distortion, it is customary to estimate the actual distortion
by running the VQ on a test sequence that is distinct from the
training sequence.

EECS 651 Winter 2001

January 12, 2001 31 Vector Quantization

Training sequence length:

How large to make the training sequence length N?
Two issues:

• the VQ designed by the algorithm becomes better as N
is made larger,

• the training distortion becomes a more accurate estimate
of actual distortion.

The convergence of the actual and training distortions with
increasing N are illustrated in the figure below. A typical rule
of thumb is that to design a good VQ, N should be at least 50
M, and larger is better. Significantly larger N is needed if
training distortion is to be used as an estimate of actual
distortion.

training sequence length N

MSE

training sequence distortion

actual distortion

actual distortion of truly best VQ

Since for estimating distortion, a test sequence need not be as
long as the training sequence required to make training
distortion a good approximation to actual distortion, it makes
sense to use such test sequences. A conservative strategy is
to choose N large enough that the training and test sequence
distortions are reasonably close.

EECS 651 Winter 2001

January 12, 2001 32 Vector Quantization

Complexity of VQ design:

The above design algorithm essentially involves encoding the
training sequence a number of times and, additionally,
computing the new centroids. Hence, the number of
operations performed is approximately proportional to NM
times the number of iterations.

Since a VQ is ordinarily designed once and used many, many
times, we are willing to live with very complex VQ design
algorithms. Nevertheless, design becomes a genuine problem
for VQ's with moderate to large dimension-rate products. (I
can't recall having seen an ustructured VQ designed with kR >
14). Thus, there are dimension-rate products e.g. kR =15 for
which one could conceivably implement a VQ, but for which
design is infeasible.

Not surprisingly a number of reduced complexity design
algorithms have been proposed. These typically involve a fast
encoding algorithm such as those described previously.
Another way to speed the algorithm is to make a good choice
of the initial codebook. This reduces the number of iterations
required.

EECS 651 Winter 2001

January 12, 2001 33 Vector Quantization

Examples of VQ's designed by the LBG algorithm

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5
Rate R

SNR (R)

dB

k = 4

k = 2

k = 8

samples of speech

k
*

k-dimensional VQ's designed using LBG algorithm on training
sequence of 640,000 samples of speech taken at 6.5 kHz
sampling rate.

Notice the gains due to increasing dimension.

Notice also that for k=8, the quantizers were designed only to
rate 1. This is because of the large complexity of designing
higher rate VQ's with dimension 8.

EECS 651 Winter 2001

January 12, 2001 34 Vector Quantization

VQ's designed for Gaussian AR source with a = .9
designed by LBG algorithm

5

10

15

20

25

1 2 3 4

Rate

S
N

R
 (

d
B

)

k=8
k=4
k=2
k=1

k=2

k=4

k=1
k=8

Note the gains of VQ over scalar Q:

 k = 2 4 8

gain ≅ 4.2 6.5 7.8 dB

Important questions:

Why does VQ gain over scalar Q?

Why does gain increase with dimension?

EECS 651 Winter 2001

January 12, 2001 35 Vector Quantization

VQ's for IID Gaussian source
designed by LBG algorithm

5

10

15

20

1 2 3 4

Rate

S
N

R
 (

d
B

)

k=4
k=2
k=1

k=2

k=4 k=1

Notice the gains of VQ over scalar quantization (at rate 3, k=4
VQ gains 1.6 dB).

Important questions:

Why does VQ gain over scalar Q?
Why does gain increase with dimension?

EECS 651 Winter 2001

January 12, 2001 36 Vector Quantization

Consider an optimal 2-dimensional VQ

Compare to an optimal scalar quantizer used twice

x1

x1

x2 x2

What are the qualitative differences?

EECS 651 Winter 2001

January 12, 2001 37 Vector Quantization

Historical Note:

It wasn't until the late 1970's that the VQ was seriously
proposed and the LBG algorithm was developed. Before that,
information theorists generally assumed that large dimensions
would be needed for VQ's to produce significant gains over
scalar quantization (probably due to their experience with
channel codes), and because they could easily see the large
complexity associated with even moderately large dimensions.

The LBG algorithm is also used in pattern recognition for
identifying clusters of multidimensional features. It was
developed independently in that community as the "k-means
algorithm".

EECS 651 Winter 2001

January 12, 2001 38 Vector Quantization

Other Properties of Optimal Quantizers

Consider a VQ with

C = {w1,…,wM}

S = {S1,…,SM},

Pi = Pr(X∈ Si)

Y = Q(X) = column vector.

If C satisfies the centroid property (wi = E[X|X∈ Si]) for all i, then

1. E Y = E X

2. E XmYn = E YmYn

3. E Xt
 Y = E ||Y||2

4. E Ym (Xn-Yn) = 0

5. E Yt
 (X-Y) = 0

6. E ||Y||2 = E ||Y||2 - E ||X-Y||2

EECS 651 Winter 2001

January 12, 2001 39 Vector Quantization

Proofs : Assume C satisfies centroid property (wi = E[X|X∈ Si]).

1. E Y = E X

Pf: E Y = ∑
i=1

M
 Pi E[Y|X∈ Si] = ∑

i=1

M
 Pi wi = ∑

i=1

M
 Pi E[X|X∈ Si] = E X

2. E XmYn = E YmYn

Pf: E XmYn = ∑
i=1

k
 Pr(X∈ Si) E[XmYn|X∈ Si]

= ∑
i=1

k
 Pr(X∈ Si) E[Xmwi,n|X∈ Si] = ∑

i=1

k
 Pr(X∈ Si) wi,n wi,m

E YmYn = ∑
i=1

k
 Pr(X∈ Si) E[YmYn|X∈ Si]

= ∑
i=1

k
 Pr(X∈ Si) wi,n wi,m = E XmYn

3. E Xt
 Y = E ||Y||2

Pf: E XtY = ∑
i=1

k
 E XiYi = ∑

i=1

k
 E YiYi = E ∑

i=1

k
 Y2

i = E ||Y||2

 (by 2)
4. E Ym(Xn-Yn) = 0

Pf: E Ym(Xn-Yn) = E YmXn - E YmYn = E YmYn - E YmYn = 0
 (by 2)

5. E Yt (X-Y) = 0

 Pf: E Yt (X-Y) = E Yt X - E YtY = E ||Y||2 - E ||Y||2 = 0
 (by 3)

6. E ||Y||2 = E ||Y||2
 - E ||X-Y||2

Pf: E ||X-Y||2 = E ||X||2 - 2 E XtY + E ||Y||2
= E ||X||2 - 2 E ||Y||2 + E ||Y||2 = E ||X||2 - E ||Y||2

(by 3)

